Plant biodiversity: phytochemicals and health



Biodiversity may be defined as the variability occuring among living organisms and affecting all species of animals and plants, their genetics and their environment. Biological diversity of plants also relies on the chemical diversity deriving from their specialized metabolites which possess a wide range of different chemical structures as a result of plant evolution. They are responsible for the plant ecological properties and are required for the plant-environment interactions. In addition, many of them display important pharmacological properties. In the recent years, the growing interest in using plant metabolites to treat diseases in humans and animals and the high request of health products originating from natural sources rather than synthetic has revived the research on plant biodiversity to identify new bioactive molecules. Based on our studies on the chemical and biological characterization of rare or less studied plant species, the present paper aims to describe a selection of botanical species with phytopharmaceutical importance in order to highlight the chemical polymorphism deriving from their biodiversity along with its implications on bioactivity.


Biodiversity Brassicaceae Passiflora L. Lavandula L. Thapsia L. 


  1. Abdull Razis AF, Mohd Noor N (2013) Cruciferous vegetables: dietary phytochemicals for cancer prevention. APJCP 14:1565–1570PubMedGoogle Scholar
  2. Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potentail of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215CrossRefPubMedGoogle Scholar
  3. Alokam R, Jeankumar VU, Sridevi JP, Matikonda SS, Peddi S, Alvala M, Yogeeswari P, Siriam D (2014) Identification and structure-activity relationship study of carvacrol derivative as Mycobacterium tuberculosis chorismate mutase inhibitors. J Enz Inhibit Med Chem 29:547–554CrossRefGoogle Scholar
  4. Argentieri MP, Accogli R, Fanizzi FP, Avato P (2011) Glucosinolate profile of “mugnolo”, a variety of Brassica oleracea L. native to Southern Italy (Salento). Planta Med 77:287–292CrossRefPubMedGoogle Scholar
  5. Argentieri MP, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. INDCRO 36:65–69Google Scholar
  6. Argentieri MP, De Lucia B, Cristiano G, Avato P (2015a) Compositional analysis of Lavandula pinnata essential oils. NPC 11:287–290Google Scholar
  7. Argentieri MP, Levi M, Guzzo F, Avato P (2015b) Phytochemical analysis of Passiflora loefgrenii Vitta, a rich source of luteolin-derived flavonoids with antioxidant properties. JPP 67:1603–1612CrossRefPubMedGoogle Scholar
  8. Avato P (1991) Essential oil of Thapsia garganica. Planta Med 57:585–586CrossRefPubMedGoogle Scholar
  9. Avato P (1997) The genus Thapsia as source of bioactive compounds. In: Verotta L (ed) Virtual activity, real pharmacology. Different approaches to the search for bioactive compounds. Research Signpost, Trivandrum, pp 17–31Google Scholar
  10. Avato P, Argentieri MP (2015) Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev 14:1019–1033CrossRefGoogle Scholar
  11. Avato P, Smitt UW (2000) Composition of the essential oils from the roots of Thapsia maxima Miller and T. villosa L. JEOR 12:303–309CrossRefGoogle Scholar
  12. Avato P, Jacobsen N, Smitt UW (1992) Chemotaxonomy of Thapsia maxima Miller. Constituents of the essential oil of the fruits. JEOR 4:467–473CrossRefGoogle Scholar
  13. Avato P, Cornett C, Andersen A, Wagner Smitt U, Brøgger Christensen S (1993) Localization of the acyl groups in proazulene guaianolides from Thapsia transtagana and Thapsia garganica. J Nat Prod 56:411–415CrossRefGoogle Scholar
  14. Avato P, Trabace G, Smitt UW (1996a) Composition of the essential oils of fruits from polyploid types of Thapsia villosa L.: chemotaxonomic evaluation. JEOR 8:123–128CrossRefGoogle Scholar
  15. Avato P, Trabace G, Smitt UW (1996b) Essential oils from fruits of three types of Thapsia villosa. Phytochemistry 43:609–612CrossRefPubMedGoogle Scholar
  16. Avato P, De Ruvo C, Cellamare S, Carotti A, Mazzoccoli M, Siro-Brigiani G (1998) Effect of Thapsia essential oils on bile composition in rats. Pharm Biol 36:335–340CrossRefGoogle Scholar
  17. Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3119CrossRefPubMedGoogle Scholar
  18. Brøgger Christensen S, Mondrup Skytte D, Denmeade SR, Dionne G, Vuust Møller J, Nissen P, Isaacs JT (2009) A trojan horse in drug development: targeting of thapsigargin towards prostate cancer cells. ACAMC 9:276–294CrossRefGoogle Scholar
  19. Bundgaard Andersen T, Quiñonero López C, Manczak T, Martinez K, Toft Simonsen H (2015) Thapsigargin—from Thapsia to Mipsagargin. Molecules 20:6113–6127CrossRefGoogle Scholar
  20. Cacciatore I, Di Giulio M, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, Turkez H, Di Campli E, Di Bartolomeo S, Robuffo I, Cellini L (2015) Carvacrol codrugs: a new approach in the antimicrobial plan. PLoS ONE 10(4):1–20CrossRefGoogle Scholar
  21. Cartea ME, Lema M, Francisco M, Velasco P (2011) Basic information on vegetable Brassica crops. In: Sadowski J, Chittaranjan K (eds) Genetics, genomics and breeding of vegetable brassicas. Science Publishers, Enfield, pp 1–34Google Scholar
  22. Castle J, Lis-Balchin M (2002) History of usage of Lavandula species. In: Lis-Balchin M (ed) Lavender—the genus Lavandula. Taylor & Francis, London, pp 35–50Google Scholar
  23. Christensen SB, Andersen A, Lauridsen A, Moldt P, Smitt UW, Thastrup O (1992) Thapsigargin, a lead to design of drugs with the calcium pump as target. In: Krogsgaard-Larsen P, Christensen SB, Kofods U (eds) New leads and targets in drug research. Munksgaard, Copenhagen, pp 243–252Google Scholar
  24. Christensen SB, Andersen A, Smitt UW (1997) Sesquiterpenoids from Thapsia species and medicinal chemistry of the thapsigargins. Fortschr Chem Org Nat 71:129–167Google Scholar
  25. Cordell GA (2000) Biodiversity and drug discovery-a symbiotic relationship. Phytochem 55:463–480CrossRefGoogle Scholar
  26. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79CrossRefPubMedGoogle Scholar
  27. De Pascual M, Teresa J, Moran JR, Fernandez A, Grande M (1986) Hemiacetalic thapsane derivatives from Thapsia villosa var. minor. Phytochemistry 25:703–709CrossRefGoogle Scholar
  28. De Vincenzi M, Stammati A, De Vincenzi A, Silano M (2004) Consituents of aromatic plants: carvacrol. Fitoterapia 75:801–804CrossRefPubMedGoogle Scholar
  29. Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharmacol 94:1–23CrossRefPubMedGoogle Scholar
  30. Doan NTQ, Paulsen ES, Sehgal P, Møller JV, Nissen P, Denmeade SR, Isaacs JT, Dionne CA, Cgristensen SB (2015) Targeting thapsigargin towards tumors. Steroids 97:2–7CrossRefPubMedGoogle Scholar
  31. Elbarbry F, Elrody N (2011) Potential health of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. J Med Plant Res 5:473–484Google Scholar
  32. Fabricant DS, Farnsworth NR (2001) The value of plant used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fiori J, Gotti R, Valgimigli L, Cavrini V (2008) Guaiazulene in health care products: determination by GC-MS and HPLC-DAD and photostability test. JPBA 47:710–715Google Scholar
  34. Fuentes F, Paredes-Gonzales X, Kong A-NT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1:179–196CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guarrera M, Turbino L, Rebora A (2001) The anti-inflammatory activity of azulene. JEADV 15:486–487PubMedGoogle Scholar
  36. Hänsel R, Keller K, Rimpler H, Hagers Scheider G (1994) Handbuch der Pharmazeutischen Praxis. Springer, BerlinCrossRefGoogle Scholar
  37. Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J Lipid Res 51:132–139CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ingale AG, Hivrale AU (2010) Pharmacological studies of Passiflora sp. and their bioactive compounds. Afr J Plant Sci 4:417–426Google Scholar
  39. Karkabounas S, Kostoula OK, Daskalou T, Veltsistas P, Karamopuzis M, Zelovitis I, Metsios A, Lekkas P, Evangelou AM, Kotsis N, Skoufos I (2006) Anticarcinogenic and antiplatelet effects of carvacrol. Exp Oncol 28:121–125PubMedGoogle Scholar
  40. Kronbak R, Duus F, Vang O (2010) Effect of 4-methoxyindole-3-carbinol on the proliferation of colon cancer cells in vitro, when treated alone or in combination with indole-3-carbinol. JAFC 58:8543–8549Google Scholar
  41. Leonti M (2011) The future is written: impact of scripts on the cognition, selection, knowledge and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. J Ethnopharmacol 134:542–555CrossRefPubMedGoogle Scholar
  42. Lima Mda S, Quintans-Junior LJ, de Santana WA, Martins Kaneto CM, Pereira Soares MB, Villareal CF (2013) Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur J Pharmacol 699:112–117CrossRefPubMedGoogle Scholar
  43. Lin Y, Shi R, Wan X, Shen H-M (2008) Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets 8:634–646CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lis-Balchin M (2002a) Chemical composition of essential oils from different species, hybrids and cultivars of Lavandula. In: Lis-Balchin M (ed) Lavender—the genus Lavandula. Taylor & Francis, London, pp 251–262Google Scholar
  45. Lis-Balchin M (ed) (2002b) Lavender—the genus Lavandula. Taylor & Francis, LondonGoogle Scholar
  46. López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini-Rev Med Chem 9:31–59CrossRefPubMedGoogle Scholar
  47. Marrelli M, Loizzo MR, Nicoletti M, Menichini F, Conforti F (2014) In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with a-amylase and pancreatic lipase inhibitory activieties. J Sci Food Agric 94:2217–2224CrossRefPubMedGoogle Scholar
  48. Marrelli M, Argentieri MP, Avato P, Menichini F, Conforti F (2016) Inhibitory effect on lipid absorption and variability of chemical constituents from Capparis sicula subsp. sicula and Capparis orientalis. Chem Biodivers 13:755–761CrossRefPubMedGoogle Scholar
  49. Mezzoug N, Elhadri A, Dallouh A, Amkiss S, Skali NS, Abrini J, Zhiri A, Baudoux D, Diallo B, El Jaziri M, Idaomar M (2007) Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat Res 629:100–110CrossRefPubMedGoogle Scholar
  50. Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S (2013) Passiflora incarnata L.: ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol 150:791–804CrossRefPubMedGoogle Scholar
  51. Patel SS, Soni H, Mishra K, Singhai AK (2011) Recent updates on the genus Passiflora: a review. Int J Res Phytochem Phramacol 1:1–16Google Scholar
  52. Pullaiah T, Bahadur B, Krishnamurthy KV (2015) Plant biodiversity. In: Bahadur B (ed) Plant biology and biotechnology: plant diversity, organization, function and improvement, vol 1. Springer India, New Delhi, pp 177–195CrossRefGoogle Scholar
  53. Ramanatha Rao V, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Org Cult 68:1–19CrossRefGoogle Scholar
  54. Rasmussen SK, Avato P (1998) Characterization of chromosomes and genome organization of Thapsia garganica L. by localizations of rRNA genes using fluorescent in situ hybridization. Hereditas 129:231–239CrossRefPubMedGoogle Scholar
  55. Robertson E (2008) Medicinal plants at risk. Nature’s pharmacy, our treasure chest: why we must conserve our natural heritage—native plant conservation campaign report. Center for Biological Diversity, Tucson, US. Accessed 21 Jan 2017
  56. Shirai Y, Fujita Y, Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Ishima T, Suganuma H, Ushida Y, Takeda M, Hashimoto K (2015) Dietary intake of sulforaphane-rich broccoli sprout extracts during juvenile and adolescence can prevent phencyclidine-induced cognitive deficits and adulthood. PLoS ONE 10(6):1–22CrossRefGoogle Scholar
  57. Smitt UW (1995) A chemotaxonomic investigation of Thapsia villosa L., Apiaceae (Umbelliferae). Bot J Lin Soc 119:367–377Google Scholar
  58. Smitt UW, Moldt P, Christensen SB (1986) Structure of a pro-1,4-dimethylazulene guaianolide from Thapsia garganica L. Acta Chem Scand Ser B 40:711–714CrossRefGoogle Scholar
  59. Suntres ZE, Coccimiglio J, Alipour M (2013) The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 55:304–318CrossRefGoogle Scholar
  60. Tasiu I (2015) Rethinking Ginkgo biloba L. medicinal uses and conservation. Pharmacogn Rev 9:140–148CrossRefGoogle Scholar
  61. Trabace L, Avato P, Mazzoccoli M, Siro-Brigiani G (1994) Choleretic activity of Thapsia chem I, II and III in rats: comparison with terpenoids constituents and peppermint oil. Phytother Res 8:305–307CrossRefGoogle Scholar
  62. Trabace L, Zotti M, Morgese MG, Tucci P, Colaianna M, Schiavone S, Avato P, Cuomo V (2011) Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicol Appl Pharmacol 255:169–175CrossRefPubMedGoogle Scholar
  63. Upson T (2002) The taxonomy of the genus Lavandula L. In: Lis-Balchin M (ed) Lavender—the genus Lavandula. Lis- Taylor & Francis, London, pp 2–34Google Scholar
  64. Upson T, Andrews S, Harriott G (2004) The genus Lavandula. Timber Press, UKGoogle Scholar
  65. Wagner Smitt U, Cornett C, Andersen A, Brøgger Christensen S, Avato P (1990) New proazulene guaianolides from Thapsia villosa. J Nat Prod 53:1479–1484CrossRefGoogle Scholar
  66. Weitzel C, Røsted N, Spalik K, Toft Simonsen H (2014) Resurrecting deadly carrots: towards a revision of Thapsia (Apiaceae) based on phylogenetic analysis of nrITS sequences and chemical profiles. Bot J Lin Soc 174:620–636CrossRefGoogle Scholar
  67. Weldegerima B (2009) Review on the importance of documenting ethnopharmacological information on medicinal plants. Afr J Pharm Pharmacol 3:400–403Google Scholar
  68. Yu H, Zhang ZL, Chen J, Pei A, Hua F, Qian X, He J, Liu CF, Xu X (2012) Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS ONE 7(3):e33584CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zotti M, Colaianna M, Morgese MG, Tucci P, Schiavone S, Avato P, Trabace L (2013) Carvacrol: from ancient flavoring to neuromodulatory agent. Molecules 18:6161–6172CrossRefPubMedGoogle Scholar
  70. Zuccolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, Schenkel EP (2011) Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLCDAD and HPLC-MS. Phytochem Anal 23:232–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di FarmaciaUniversitá di Bari Aldo MoroBariItaly

Personalised recommendations