Skip to main content

Advertisement

Log in

Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Carrageenans are sulfated polysaccharides isolated from marine red algae that share a common backbone of D-galactose alternately linked by α(1,3) and β(1,4) glycosidic linkages. They are classified based on the number and the position of the sulfate ester groups and the occurrence of a 3,6 anhydro-ring in the α-linked galactose. Accordingly the three most commercially exploited carrageenans are κ-, ι-, and λ-carrageenans. Because of their biocompatibility, exceptional physicochemical features and emulsifying, thickening, gelling and stabilizing abilities, they have found several industrial application, especially in food, pharmaceutical and cosmetic industries. Moreover, carrageenans can be degraded into lower molecular weight oligosaccharides, which have been reported to have promising pharmacological properties and potential therapeutic applications. Enzymes which degrade carrageenans are called carrageenases and are produced only by marine bacterial species. These enzymes all are endohydrolases that hydrolyze the internal β 1,4 linkages in carrageenans and produce a series of homologous even-numbered oligosaccharides with various biological and physiological activities including anti-tumor, anti-inflammation, anti-viral, anti-coagulation, etc. Carrageenase enzymes have also other applications related to the biomedical field, bioethanol production, prevention of red algal bloom, obtaining algal protoplasts, etc. In the first part of this review, general information regarding structure, physicochemical properties, biological activities and potential applications of carrageenans is summarized. The second part deals with research and development works on some aspects of carrageenase enzymes like the source, characterization, the kinetics and biochemical properties and their applications in various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad LV, Kudo H, Saiki S, Nagasawa N, Tamada M, Katsumura Y et al (2009) Radiation degradation studies of carrageenans. Carbohydr Polym 78:100–106

    Article  CAS  Google Scholar 

  • Abad LV, Kudo H, Saiki S, Nagasawa N, Tamada M, Fu H et al (2010) Radiolysis studies of aqueous κ-carrageenan. Nucl Instr Meth Phys Res B 268:1607–1612

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Saurabh CK, Tye YY et al (2017) Seaweed based sustainable films and composites for food and pharmaceutical applications: a review. Renew Sustain Energy Rev 77:353–362

    Article  CAS  Google Scholar 

  • Abt B, Lu M, Misra M, Han C, Nolan M et al (2011) Complete genome sequence of Cellulophaga algicola type strain (IC166). Stand Genom Sci 4:72–80

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki T, Higashimoto Y, Morishita T (1999) Purification and characterization of κ-carrageenase from a marine bacterium, Vibrio sp. CA-1004. Fish Sci 65:937–942

    Article  CAS  Google Scholar 

  • Arora D, Sharma N, Sharma V et al (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100:2603–2615

    Article  CAS  PubMed  Google Scholar 

  • Barbeyron T, Henrissat B, Kloareg B (1994) The gene encoding the κ-carrageenase of Alteromonas carrageenovora is related to β-1,3-1,4-glucanases. Gene 139:105–109

    Article  CAS  PubMed  Google Scholar 

  • Barbeyron T, Gerard A, Potin P, Henrissat B, Kloareg B (1998) The κ-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol Biol Evol 15:528–537

    Article  CAS  PubMed  Google Scholar 

  • Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B (2000) Iota-carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem 275:35499–35505

    Article  CAS  PubMed  Google Scholar 

  • Barbeyron T, Brillet-Gueguen L, Carre W, Carrière C, Caron C, Czjzek M et al (2016) Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE 11:e0164846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellion C, Hamer GK, Yaphe W (1981) Analysis of kappaiota hybrid carrageenans with kappa-carrageenase, iotacarrageenase and 13C-NMR. Proc Int Seaweed Symp 10:379–384

    Google Scholar 

  • Bellion C, Hamar G, Yaphe W (1982) The degradation of Eucheuma spinosum and Eucheuma cottinii carrageenans by ι-carrageenases and κ carrageenases from marine bacteria. Can J Microbiol 28:874–884

    Article  CAS  Google Scholar 

  • Beltagy EA, Youssef AS, El-Shenaway MA, El-Assar SA (2012) Purification of kappa (κ)-carrageenase from locally isolated Cellulosimicrobium cellulans. Afr J Biotechnol 11:11438–11446

    CAS  Google Scholar 

  • Beygmoradi A, Homaei A (2017) Marine Microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11:131–152

    Google Scholar 

  • Bhardwaj TR, Kanwar M, Lal R, Gupta A (2000) Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm 26:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Borthakur A, Dudeja PK, Tobacman JK (2008) Carrageenan induces cell cycle arrest in human intestinal epithelial cells in vitro. J Nutr 138:469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonferoni MC, Rossi S, Tamayo M, Pedraz JL, Dominguez-Gil A, Caramella C (1993) On the employment of λ-carrageenan in a matrix system. I. Sensitivityto dissolution medium and comparison with Na carboxymethylcellulose andxanthan gum. J Control Release 26:119–127

    Article  CAS  Google Scholar 

  • Bonferoni MC, Rossi S, Tamayo M et al (1994) On the employment of λ-carrageenan in a matrix system. II. λ-Carrageenan and hydroxypropylmethylcellulose mixtures. J Control Release 30:175–182

    Article  CAS  Google Scholar 

  • Bonferoni MC, Rossi S, Ferrari F, Caramella C (2004a) Development of oralcontrolled-release tablet formulations based on diltiazem-carrageenan complex. Pharm Dev Technol 9:155–162

    Article  CAS  PubMed  Google Scholar 

  • Bonferoni MC, Rossi S, Ferrari F, Caramella C (2004b) Development of oral controlled-release tablet formulations based on diltiazem-carrageenan complex. Pharm Dev Technol 9:155–162

    Article  CAS  PubMed  Google Scholar 

  • Briones AV, Sato T (2010) Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan. React Function Polym 70:19–27

    Article  CAS  Google Scholar 

  • Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2:e69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulmer C, Margaritis A, Xenocostas A (2012) Encapsulation and controlledrelease of recombinant human erythropoietin from chitosan–carrageenannanoparticles. Curr Drug Deliv 9:527–537

    Article  CAS  PubMed  Google Scholar 

  • Campo VL, Kawano DF, Silva JDB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180

    Article  CAS  Google Scholar 

  • Cánovas M, Bernal V, González M et al (2005) Factors affecting the biotransformation of trimethylammonium compounds into l-carnitine by Escherichia coli. Biochem Eng J 26:145–154

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Caram-Lelham N, Sundelöf LO (1996) The effect of hydrophobic character of drugs and helix-coil transition of kappa-carrageenan on the polyelectrolyte-drug interaction. Pharm Res 13:920–925

    Article  CAS  PubMed  Google Scholar 

  • Caram-Lelham N, Sundelöf LO, Andersson T (1995) Preparative separation of oligosaccharides from κ-carrageenan, sodium hyaluronate, and dextran by Superdex™ 30 prep. grad. Carbohydr Res 273:71–76

    Article  CAS  Google Scholar 

  • Cardoso M, Costa R, Mano J (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14:34

    Article  CAS  PubMed Central  Google Scholar 

  • Chandrasekaran M, Kumar SR (2010) Marine microbial enzymes. In: Werner H, Roken S (eds) Biotechnology. EOLSS, Paris, pp 47–79

    Google Scholar 

  • Chauhan PS, Gupta N (2017) Insight into microbial mannosidases: a review. Crit Rev Biotechnol 37:190–201

    Article  CAS  PubMed  Google Scholar 

  • Chauhan PS, Saxena A (2016) Bacterial carrageenases: an overview of production and biotechnological applications. Biotech 6:1–18

    Google Scholar 

  • Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93:1817–1830

    Article  CAS  PubMed  Google Scholar 

  • Chauhan PS, Bharadwaj A, Puri N, Gupta N (2014a) Optimization of medium composition for alkali-thermostable mannanase production by Bacillus nealsonii PN-11 in submerged fermentation. Int J Curr Microbiol Appl Sci 3:1033–1045

    CAS  Google Scholar 

  • Chauhan PS, Sharma P, Puri N, Gupta N (2014b) A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan. Biosystems Eng 37:1459–1467

    Article  CAS  Google Scholar 

  • Chauhan PS, Sharma P, Puri N, Gupta N, Res EF (2014c) Purification and characterization of an alkali-thermostable B-mannanase from Bacillus nealsonii PN-11 and its application in manno-oligosaccharides preparation having prebiotic potential. Eur Food Res Technol 238:927–936

    Article  CAS  Google Scholar 

  • Chauhan PS, Soni SK, Sharma P, Saini A, Gupta N (2014d) A mannanase from Bacillus nealsonii PN-11: statistical optimization of production and application in biobleaching of pulp in combination with xylanase. Int J Pharma Bio Sci 5:237–251

    CAS  Google Scholar 

  • Chen LCM, Craigie JS, Xie ZK (1994) Protoplast production from Porphyra linearis using a simplified agarase procedure capable of commercial application. J Appl Phys 6:35–39

    CAS  Google Scholar 

  • Chen HM, Yan XJ, Wang F, Xu WF, Zhang L (2010) Assessment of the oxidative cellular toxicity of a κ-carrageenan oxidative degradation product towards Caco-2 cells. Food Res Int 43:2390–2401

    Article  CAS  Google Scholar 

  • Collén PN, Lemoine M, Daniellou R, Guégan J-P, Paoletti S, Helbert W (2009) Enzymatic degradation of κ-carrageenan in aqueous solution. Biomacromol 10:1757–1767

    Article  CAS  Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio T et al (2006) Complete sequence of Pseudoalteromonas Atlantica T6c. US DOE Joint Genome Institute, Walnut Creek

    Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole K, Sheath R (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 14:42

    Article  CAS  PubMed Central  Google Scholar 

  • d’Ayala GG, Malinconico M, Laurienzo P (2008) marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106

    Article  CAS  PubMed  Google Scholar 

  • Dadshahi Z, Homaei A, Zeinali F, Sajedi RH, Khajeh K (2016) Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem 202:110–115

    Article  CAS  PubMed  Google Scholar 

  • Dafe A, Etemadi H, Zarredar H, Mahdavinia GR (2017) Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. Int J Biol Macromol 97:299–307

    Article  CAS  PubMed  Google Scholar 

  • Daniel-da-Silva AL, Trindade T, Goodfellow BJ et al (2007) In situ synthesis of magnetite nanoparticles in carrageenan gels. Biomacromol 8:2350–2357

    Article  CAS  Google Scholar 

  • Daniel-da-Silva AL, Lóio R, Lopes-da-Silva JA et al (2008) Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. J Colloid Interface Sci 324:205–211

    Article  CAS  PubMed  Google Scholar 

  • Daniel-da-Silva AL, Moreira J, Neto R, Estrada AC, Gil AM, Trindade T (2012) Impact of magnetic nanofillers in the swelling and release proper-ties of kappa-carrageenan hydrogel nanocomposites. Carbohydr Polym 87:328–335

    Article  CAS  Google Scholar 

  • De Ruiter GA, Rudolph B (1997) Carrageenan biotechnology. Trends Food SciTechnol 8:389–395

    Article  Google Scholar 

  • De SF-Tischera PC, Talarico L, Noseda M, Guimaraes SMP, Damonte E, Duarte M (2006) Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr Polym 63:459–465

    Article  CAS  Google Scholar 

  • Debashish G, Malay S, Barindra S, Joydeep M (2005) Marine enzymes. Adv Biochem Eng/Biotechnol 96:189–218

    Article  CAS  Google Scholar 

  • Decamps C, Norton S, Poncelet D, Neufeld RJ (2004) Continuous pilot plant–scale immobilization of yeast in κ-carrageenan gel beads. AIChE J 50:1599–1605

    Article  CAS  Google Scholar 

  • Devi N, Maji TK (2010) Microencapsulation of isoniazid in genipin-crosslinked gelatin-A-κ-carrageenan polyelectrolyte complex. Drug Dev Ind Pharm 36:56–63

    Article  CAS  PubMed  Google Scholar 

  • Elnashar MMM, Wahba MI, Amin MA, Eldiwany AI (2014) Application of Plackett–Burman screening design to the modeling of grafted alginate–carrageenan beads for the immobilization of penicillin G acylase. J Appl Polym Sci 131:40285–40295

  • Esawy MA, Awad GEA, Wahab WAA et al (2016) Immobilization of halophilic Aspergillus awamori EM66 exochitinase on grafted k-carrageenan-alginate beads. 3 Biotech 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada AC, Daniel-da-Silva AL, Trindade T (2013) Photothermally enhanced drug release by [small kappa]-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv 3:10828–10836

    Article  CAS  Google Scholar 

  • Foley PM, Beach ES, Zimmerman JB (2011) Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 13:1399

    Article  CAS  Google Scholar 

  • Fu XT, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8:200–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funami T, Hiroe M, Noda S et al (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll 21:617–629

    Article  CAS  Google Scholar 

  • Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11:20140817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genicot SM, Groisillier A, Rogniaux H, Meslet-Cladière L, Barbeyron T, Helbert W (2014) Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front Chem 2:2

    Article  CAS  Google Scholar 

  • Girond S, Crance JM, Van Cuyck-Gandre H, Renaudet J, Deloince R (1991) Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol 142:261–270

    Article  CAS  PubMed  Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W et al (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci 100:8298–8303

    Article  PubMed  Google Scholar 

  • Gonçalves VSS, Gurikov P, Poejo J et al (2016) Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 107:160–170

    Article  CAS  PubMed  Google Scholar 

  • Greer CW, Yaphe W (1984) Purification and properties of iotacarrageenase from a marine bacterium. Can J Microbiol 30:1500–1506

    Article  CAS  Google Scholar 

  • Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed MaterRes A 92:1265–1272

    Google Scholar 

  • Guibet M, Colin S, Barbeyron T, Genicot S, Kloareg B et al (2007) Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iotacarrageenases. Biochem J 404:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guibet M, Boulenguer P, Mazoyer J et al (2008) Composition and distribution of carrabiose moieties in hybrid κ-/ι-carrageenans using carrageenases. Biomacromol 9:408–415

    Article  CAS  Google Scholar 

  • Gurpilhares DdB, Moreira TR, Bueno JdL et al (2016) Algae’s sulfated polysaccharides modifications: potential use of microbial enzymes. Process Biochem 51:989–998

    Article  CAS  Google Scholar 

  • Haijin M, Xiaolu J, Huashi G (2003) A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phys 15:297–303

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariharan M, Wheatley TA, Price JC (1997) Controlled-release tablet matrices from carrageenans: compression and dissolution studies. Pharm Dev Technol 2:383–393

    Article  CAS  PubMed  Google Scholar 

  • Hatada Y, Mizuno M, Li Z, Ohta Y (2011) Hyper-production and characterization of the ι-carrageenase useful for ι-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalytic mechanism. Mar Biotechnol 13:411–422

    Article  CAS  PubMed  Google Scholar 

  • Hawkes MW (1990) Reproductive strategies. In: Cole KM, Sheath RG (eds) Biology of the red algae. Press Syndicate of the University of Cambridge, New York, pp 455–476

    Google Scholar 

  • He Y-C, Xu J-H, Su J-H, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Hebar A, Koller C, Seifert J-M et al (2015) Non-clinical safety evaluation of intranasal iota-carrageenan. PLoS ONE 10:e0122911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hehemann J-H, Boraston AB, Czjzek M (2014) A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol 28:77–86

    Article  CAS  PubMed  Google Scholar 

  • Helbert W (2017) Marine polysaccharide sulfatases. Front Mar Sci 4:1–10

    Article  Google Scholar 

  • Henares BM, Enriquez EP, Dayrit FM, Rojas NRL (2010) Iota-carrageenan hydrolysis by Pseudoalteromonas carrageenovora IFO12985. Philipp J Sci 139:131–138

    Google Scholar 

  • Hezaveh H, Muhamad II (2012) The effect of nanoparticles on gastrointestinalrelease from modified kappa-carrageenan nanocomposite hydrogels. Carbohydr Polym 89:138–145

    Article  CAS  PubMed  Google Scholar 

  • Hezaveh H, Muhamad II, Noshadi I, Shu Fen L, Ngadi N (2012) Swelling behaviour and controlled drug release from cross-linked kappa-carrageenan/NaCMC hydrogel by diffusion mechanism. J Microencapsul 29:68–379

    Article  CAS  Google Scholar 

  • Ho C-L (2015) Phylogeny of algal sequences encoding carbohydrate sulfotransferase, formylglycine-dependent sulfatases, and putative sulfatase modifying factors. Front Plant Sci 6:1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Homaei A (2015) Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. J Mol Catal B Enzym 118:16–22

    Article  CAS  Google Scholar 

  • Homaei A, Ghanbarzadeh M, Monsef F (2016a) Biochemical features and kinetic properties of α-amylases from marine organisms. Int J Biol Macromol 83:306–314

    Article  CAS  PubMed  Google Scholar 

  • Homaei A, Lavajoo F, Sariri R (2016b) Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int J Biol Macromol 88:542–552

    Article  CAS  PubMed  Google Scholar 

  • Hu XK, Jiang XL, Aubree E, Boulenguer P, Critchley AT (2006) Preparation and in vivo antitumor activity of kappa-carrageenan oligosaccharides. Pharm Biol 44:646–650

    Article  CAS  Google Scholar 

  • Ishikura M, Hagiwara K, Takishita K, Haga M, Iwai K, Maruyama T (2004) Isolation of new Symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Mar Biotechnol 6:378–385

    Article  CAS  PubMed  Google Scholar 

  • Iurciuc (Tincu) C-E, Savin A, Atanase LI et al (2017) Physico-chemical characteristics and fermentative activity of the hydrogel particles based on polysaccharides mixture with yeast cells immobilized, obtained by ionotropic gelation. Food Bioprod Process 104:104–123

    Article  CAS  Google Scholar 

  • Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T (2005) The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 385:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Jiang Y-J, Zhang Y-F et al (2007) Biosilica-coated κ-carrageenan microspheres for yeast alcohol dehydrogenase encapsulation. J Biomater Sci Polym Ed 18:1517–1526

    CAS  PubMed  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart H (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Jong WS, Saurí A, Luirink J (2010) Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol 21:646–652

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau D, Boulenguer P, Mazoyer J, Helbert W (2010) Enzymatic degradation of hybrid ι-/ν-carrageenan by Alteromonas fortis-carrageenase. Carbohydr Res 345:934–940

    Article  CAS  PubMed  Google Scholar 

  • Joye IJ, McClements DJ (2016) Biopolymer-based delivery systems: challenges and opportunities. Curr Top Med Chem 16:1026–1039

    Article  CAS  PubMed  Google Scholar 

  • Kalitnik AA, Barabanova AOB, Nagorskaya VP, Reunov AV, Glazunov VP, Solov’eva TF, Yermak IM (2013) Low molecular weight derivatives of different carrageenan types and their antiviral activity. J Appl Phycol 25:65–72

    Article  CAS  Google Scholar 

  • Kalsoom Khan A, Saba AU, Nawazish S et al (2017) Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev 2017:1–13

    Article  CAS  Google Scholar 

  • Kang S, Kim JK (2015) Reuse of seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar. World J Microbiol Biotechnol 31:209–217

    Article  PubMed  Google Scholar 

  • Kavitha Reddy GKM, Satla S, Gaikwad S (2011) Natural polysaccharides: versatile excipients for controlled drug delivery systems. Asian J Pharm Sci 6:275–286

    Google Scholar 

  • Kawata K, Hanawa T, Endo N et al (2012) Formulation study on retinoic acid gel composed of iota-carrageenan, polyethylene oxide and Emulgen® 408. Chem Pharm Bull (Tokyo) 60:825–830

    Article  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2008) Marine metagenomics strategies for discovery of novel enzymes with biotechnological applications from marine ecosystems. Microb Cell Fact 7:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy J, O’Leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson ADW (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799

    Article  CAS  PubMed  Google Scholar 

  • Khambhaty Y, Mody K, Jha B (2007a) Purification and characterization of κ-carrageenase from a novel γ-proteobacterium, Pseudomonas elongata (MTCC 5261) syn. Microbulbifer elongatus comb. Nov. Biotechnol Bioprocess Eng 12:668–675

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Jha B, Gohel V (2007b) Statistical optimization of medium components for κ-carrageenase production by Pseudomonas elongate. Enzyme Microb Technol 40:813–822

    Article  CAS  Google Scholar 

  • Kilmarx PH, van de Wijgert JHHM, Chaikummao S et al (2006) Safety and acceptability of the candidate microbicide Carraguard in Thai Women: findings from a Phase II Clinical Trial. J Acquir Immune Defic Syndr 43:327–334

    Article  CAS  PubMed  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  • Knudsen NR, Ale MT, Meyer AS (2015) eaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359

    Article  CAS  Google Scholar 

  • Knutsen S, Myslabodski B, Larsen B, Usov A (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37:163–169

    Article  CAS  Google Scholar 

  • Kobayashi T, Uchimura K, Osamu K, Deguchi S, Horikoshi K (2012) Genetic and biochemical characterization of the Pseudoalteromonas tetraodonis alkaline κ-carrageenase. Biosci Biotechnol Biochem 76:506–511

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Yoshihara K, Sawada T, Kondo H, Sako K (2008) Extended releaseof a large amount of highly water-soluble diltiazem hydrochloride by utiliz-ing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG)matrix tablets. Eur J Pharm Biopharm 70:556–562

    Article  CAS  PubMed  Google Scholar 

  • Koklukaya SZ, Sezer S, Aksoy S, Hasirci N (2016) Polyacrylamide-based semi-interpenetrating networks for entrapment of laccase and their use in azo dye decolorization. Biotechnol Appl Biochem 63:699–707

    Article  CAS  PubMed  Google Scholar 

  • Korenblum E, Valoni É, Penna M, Seldin L (2010) Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Appl Microbiol Biotechnol 85:791–800

    Article  CAS  PubMed  Google Scholar 

  • Krishnan MS, Nghiem NP, Davison BH (1999) Ethanol production from corn starch in a fluidized-bed bioreactor. Appl Biochem Biotechnol 77–79:359–371

    Article  PubMed  Google Scholar 

  • Lai VMF, Wong PAL, Li CY (2000) Effects of cation properties on sol-gel transition and gel properties of κ-carrageenan. J Food Sci 65:1332–1337

    Article  CAS  Google Scholar 

  • Le Gall Y, Braud JP, Kloareg B (1990) Protoplast production in Chondrus crispus gametophytes (Gigartinales, Rhodophyta). Plant Cell Rep 8:582–585

    Article  PubMed  Google Scholar 

  • Leibbrandt A, Meier C, König-Schuster M, Weinmüllner R, Kalthoff D, Pflugfelder B, Graf P, Frank-Gehrke B, Beer M, Fazekas T, Unger H, Prieschl-Grassauer E, Grassauer A (2010) Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS ONE 5:e14320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemoine M, Nyvall Collén P, Helbert W (2009) Physical state of κ-carrageenan modulates the mode of action of κ-carrageenase from Pseudoalteromonas carrageenovora. Biochem J 419:545–553

    Article  CAS  PubMed  Google Scholar 

  • Leone G, Consumi M, Pepi S et al (2016) New formulations to enhance lovastatin release from red yeast rice (RYR). J Drug Deliv Sci Technol 36:110–119

    Article  CAS  Google Scholar 

  • Li B, Zaveri T, Ziegler GR, Hayes JE (2013a) User preferences in a carrageenan-based vaginal drug delivery system. PLoS ONE 8:e54975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang L, Shao Y et al (2013b) Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets. J Pharm Sci 102:2644–2654

    Article  CAS  PubMed  Google Scholar 

  • Li S, Jia P, Wang L, Yu W, Hang F (2013c) Purification and characterization of a new thermostable κ-carrageenase from the marine bacterium Pseudoalteromonas sp. QY203. J Ocean Univ China 12:155–159

    Article  CAS  Google Scholar 

  • Li J, Hu Q, Seswita-Zilda D (2014a) Purification and characterization of a thermostable κ-carrageenase from a hot spring bacterium, Bacillus sp. Biotechnol Lett 36:1669–1674

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ni R, Shao Y, Mao S (2014b) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang Z, Qiao L, Gao Y, Guan H, Hwang H, Aker WG, Wang P (2015) Purification and characterization of a novel enzyme produced by Catenovulum sp. LP and its application in the pretreatment to Ulva prolifera for bio-ethanol production. Process Biochem 50:799–806

    Article  CAS  Google Scholar 

  • Li S, Hao J, Sun M (2017) Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122. Int J Biol Macromol 102:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Lii C, Chen C-H, Yeh A-I, Lai VM-F (1999) Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound. Food Hydrocoll 13:477–481

    Article  CAS  Google Scholar 

  • Lin B, Lu G, Li S, Hu Z, Chen H (2012) Draft genome sequence of the novel agarolytic bacterium Aquimarina agarilytica ZC1. J Bacteriol 194:2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling G, Zhang T, Zhang P et al (2016) Nanostructured lipid–carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev Ind Pharm 42:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Huang H (2016) Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydr Polym 147:226–233

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li L (2007) Diffusion of camptothecin immobilized with cationic surfactant into agarose hydrogel containing anionic carrageenan. J Biomed MaterRes A 83A:1103–1109

    Article  CAS  Google Scholar 

  • Liu F, Yu B (2015) Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Appl Microbiol Biotechnol 99:4659–4666

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhu Y, Wei G, Lu W (2009) Effect of carrageenan on poloxamer-based in situ gel for vaginal use: improved in vitro and in vivo sustained-release properties. Eur J Pharm Sci 37:306–312

    Article  CAS  PubMed  Google Scholar 

  • Liu GL, Li Y, Chi Z, Chi ZM (2011a) Purification and characterization of κ-carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of κ-carrageenan. Process Biochem 46:265–271

    Article  CAS  Google Scholar 

  • Liu J, Zhang Z, Dang H, Lu J, Cui Z (2011b) Isolation and Characterization of a Cold-Active Amylase from Marine Wangia Sp. C52. Afr J Biotechnol Res 5:1156–1162

    CAS  Google Scholar 

  • Liu Z, Li G, Mo Z, Mou H (2013) Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacterium Zobellia sp. ZM-2. Appl Microbiol Biotechnol 97:10057–10067

    Article  CAS  PubMed  Google Scholar 

  • Long J, Wu Z, Li X et al (2015a) New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4–κ-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. J Agric Food Chem 8:3534–3542

    Article  CAS  Google Scholar 

  • Long J, Yu X, Xu E et al (2015b) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107

    Article  CAS  PubMed  Google Scholar 

  • Luaces-Rodríguez A, Díaz-Tomé V, González-Barcia M et al (2017) Cysteamine polysaccharide hydrogels: study of extended ocular delivery and biopermanence time by PET imaging. Int J Pharm 528:714–722

    Article  CAS  PubMed  Google Scholar 

  • Ma YX, Dong SL, Jiang XL, Li J, Mou HJ (2010) Purification and characterization of κ-carrageenase from marine bacterium mutant strain Pseudoalteromonas sp. AJ5-13 and its degraded products. J Food Biochem 34:661–678

    CAS  Google Scholar 

  • Ma S, Duan G, Chai W, Geng C, Tan Y, Wang L, Sourd F, Michel G, Yu W, Han F (2013) Purification, cloning, characterization and essential amino acid residues analysis of a new ι-carrageenase from Cellulophaga sp. QY3. PLoS ONE 8:e64666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavinia GR, Marandi GB, Pourjavadi A, Kiani G (2010) Semi-IPN carrageenan-based nanocomposite hydrogels: synthesis and swelling behavior. J Appl Polym Sci 118:2989–2997

    Article  CAS  Google Scholar 

  • Makas YG, Kalkan NA, Aksoy S et al (2010) Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks. J Biotechnol 148:216–220

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Guo C, Shi Y (2012a) Recent advances in polymeric micro-spheres for parenteral drug delivery-part 1. Expert Opin Drug Deliv 9:1161–1176

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Guo C, Shi Y, Li LC (2012b) Recent advances in polymeric micro-spheres for parenteral drug delivery-Part 2. Expert Opin Drug Deliv 9:1209–1223

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Barbeyron T, Michel G, Portetelle D, Vandenbol M (2013) Functional screening of a metagenomic library from algal biofilms. Commun Agric Appl Biol Sci 78:37–41

  • Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 98:2917–2935

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Endo K, Koizumi N, Hayami T, Fukazawa T, Yatsunami R, Fukui T, Nakamura S (2006) Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles 10:251–255

    Article  CAS  PubMed  Google Scholar 

  • Mavromatis K, Abt B, Brambilla E, Lapidus A, Copeland A (2010) Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010–24). Stand Genom Sci 2:290–299

    Article  Google Scholar 

  • McDonald HC, Schmidt B (2009) Kappa-carrageenase and kappa-carrageenase containing compositions. US20090048136A1

  • McGill HC, McMahan CA, Wigodsky HS, Sprinz H (1977) Carrageenan in formula and infant baboon development. Gastroenterology 73:512–517

    CAS  PubMed  Google Scholar 

  • McKim JM, Baas H, Rice GP et al (2016) Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol 96:1–10

    Article  CAS  PubMed  Google Scholar 

  • McLean MW, Williamson FB (1979) κ-Carrageenase from Pseudomonas carrageenovora. Eur J Biochem 93:553–558

    Article  CAS  PubMed  Google Scholar 

  • McLean MW, Williamson FB (1981) Enzymes from Pseudomonas carrageenovora. Application to studies of carrageenan structure. Proc Int Seaweed Symp 10:479–484

    Google Scholar 

  • Mensour NA, Margaritis A, Briens CL, Pilkington H, Russel I (1996) Application of immobilized yeast cells in the brewing industry. Prog Biotechnol 11:661–671

    Article  CAS  Google Scholar 

  • Michel G, Barbeyron T, Flament D, Vernet T, Kloareg B, Dideberg O (1999) Expression, purification, crystallization and preliminary x-ray analysis of the kappa-carrageenase from Pseudoalteromonas carrageenovora. Acta Crystallogr D 55:918–920

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Flament D, Barbeyron T, Vernet T, Kloareg B, Dideberg O (2000) Expression, purifi cation, crystallization and preliminary X-ray analysis of the iota-carrageenase from Alteromonas fortis. Acta Crystallogr D 56:766–768

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B et al (2001a) The kappa carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure 9:513–525

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Chantalat L, Fanchon E, Henrissat B, Kloareg B, Dideberg O (2001b) The ι- carrageenase of Alteromonas fortis. A b-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem 276:40202–40209

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Helbert W, Kahn R et al (2003) The structural bases of the processive degradation of ι-carrageenan, a main cell wall polysaccharide of red algae. J Mol Biol 334:421–433

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Ishitani M, Takahashi A, Shimoyama T, Itho K, Attwood D (2011) Carrageenan gels for oral sustained delivery of acetaminophen to dysphagicpatients. Biol Pharm Bull 34:164–166

    Article  CAS  PubMed  Google Scholar 

  • Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2008) Ionically cross-linked carrageenan-alginate hydrogel beads. Journal of Biomate-rials Science. J Biomater Sci Polym Ed 19:47–59

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Villoslada I, Oyarzun F, Miranda V, Hess S, Rivas BL (2005) Bind-ing of chlorpheniramine maleate to pharmacologically important alginic acid, carboxymethylcellulose, kappa-carageenan, and iota-carrageenan as studied bydiafiltration. J Appl Polym Sci 98:598–602

    Article  CAS  Google Scholar 

  • Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse inflammation protocols. Humana Press, New Jersey, pp 115–122

    Google Scholar 

  • Mou H, Jiang X, Liv Z, Guan H (2004) Structural analysis of kappa-carrageenan oligosaccharides released by carrageenase from marine Cytophaga MCA-2. J Food Biochem 28:245–260

    Article  CAS  Google Scholar 

  • Muffler K, Sana B, Mukherjee J, Ulber R (2015) Marine enzymes—production & applications BT. In: Kim S-K (ed) Springer handbook of marine biotechnology. Springer, Berlin, pp 413–429

    Chapter  Google Scholar 

  • Muller I, Kahnert A, Pape T, Sheldrick GM, Meyer-Klaucke W, Dierks T et al (2004) Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) alpha-ketoglutarate-dependent dioxygenase superfamily. Biochemistry 43:3075–3088

    Article  CAS  PubMed  Google Scholar 

  • Myslabodski DE, Stancioff D, Heckert RA (1996) Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS. Carbohydr Polym 31:83–92

    Article  CAS  Google Scholar 

  • Navrátil M, Gemeiner P, Klein J et al (2002) Properties of hydrogel materials used for entrapment of microbial cells in production of fermeted beverages. Artif Cells Blood Substit Biotechnol 30:199–218

    Article  Google Scholar 

  • Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med (Praha) 58:187–205

    Article  CAS  Google Scholar 

  • Negi S, Banerjee R (2009) Characterization of amylase and protease produced by Aspergillus awamori in a single bioreactor. Food Res Int 42:433–448

    Article  CAS  Google Scholar 

  • Nerurkar J, Jun HW, Price JC, Park MO (2005) Controlled-release matrix tablets of ibuprofen using cellulose ethers and carrageenans: effect of formulation factors on dissolution rates. Eur J Pharm Biopharm 61:56–68

    Article  CAS  PubMed  Google Scholar 

  • Ni M (2009) Study on κ-carrageenase of marine bacterium Cellulophaga sp. QY201, Qingdao

  • Nigam JN (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J Biotechnol 80:189–193

    Article  CAS  PubMed  Google Scholar 

  • Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E (2017) Marine-derived biocatalysts: importance, accessing, and application in aromatic pollutant bioremediation. Front Microbiol 8:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh C, Kwon YK, Heo SJ, De Zoysa M, Affan A et al (2011) Complete genome sequence of strain s 85, a novel member of the family Flavobacteriaceae. J Bacteriol 193:6107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta Y, Hatada Y (2006) A novel enzyme, lambda-carrageenase isolated from a deep sea bacterium. J Biochem 140:475–481

    Article  CAS  PubMed  Google Scholar 

  • Østgaard K, Wangen BF, Knutsen SH, Aasen IM (1993) Large-scale production and purification of κ-carrageenase from Pseudomonas carrageenovora for application in seaweed biotechnology. Enzyme Microb Technol 15:326–333

    Article  Google Scholar 

  • Osuga J, Mori A, Kato J (1984) Acetic acid production by immobilized Acetobacter aceti cells entrapped in a κ-carrageenan gel. J Ferment Technol 62:139–149

    CAS  Google Scholar 

  • Ozsoy Y, Bergisadi N (2000) Preparation of mefenamic acid sustained releasebeads based on kappa-carrageenan. Boll Chim Farm 139:120–123

    CAS  PubMed  Google Scholar 

  • Padhi JR, Nayak D, Nanda A et al (2016) Development of highly biocompatible Gelatin & i-Carrageenan based composite hydrogels: in depth physiochemical analysis for biomedical applications. Carbohydr Polym 153:292–301

    Article  CAS  PubMed  Google Scholar 

  • Pairatwachapun S, Paradee N, Sirivat A (2016) Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation. Carbohydr Polym 137:214–221

    Article  CAS  PubMed  Google Scholar 

  • Pati A, Abt B, Teshima H, Nolan M, Lapidus A et al (2011) Complete genome sequence of Cellulophaga lytica type strain (LIM-21). Stand Genom Sci 4:221–232

    Article  CAS  Google Scholar 

  • Patier P, Potin P, Rochas C, Kloareg B, Yvin J-C, Liénart Y (1995) Free and silica-bound oligo kappa-carrageenan elicit laminarinase activity in Rubus cells and protoplasts. Plant Sci 110:27–35

    Article  CAS  Google Scholar 

  • Patil RT, Speaker TJ (1998) Carrageenan as an anionic polymer for aqueous microencapsulation. Drug Deliv 5:179–182

    Article  CAS  PubMed  Google Scholar 

  • Pavli M, Vrecer F, Baumgartner S (2010) Matrix tablets based on carrageenanswith dual controlled release of doxazosin mesylate. Int J Pharm 400:15–23

    Article  CAS  PubMed  Google Scholar 

  • Pavli M, Baumgartner S, Kos P, Kogej K (2011) Doxazosin–carrageenan inter-actions: a novel approach for studying drug–polymer interactions and relationto controlled drug release. Int J Pharm 421:110–119

    Article  CAS  PubMed  Google Scholar 

  • Pedersen G, Hagen HA, Asferg L, Sorensen E (1995) Removal of printing paste thickner and excess dye after textile printing. US5405414A

  • Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br J Psychol 14:103–117

    Google Scholar 

  • Picker KM (1999a) Matrix tablets of carrageenans. II. Release behavior and effect of added cations. Drug Dev Ind Pharm 25:339–346

    Article  CAS  PubMed  Google Scholar 

  • Picker KM (1999b) The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. Eur J Pharm Biopharm 48:27–36

    Article  CAS  PubMed  Google Scholar 

  • Piyakulawat P, Praphairaksit N, Chantarasiri N, Muangsin N (2007) Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS Pharm Sci Tech 8:E97

    Article  Google Scholar 

  • Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromol 12:3952–3961

    Article  CAS  Google Scholar 

  • Potin P, Sanseau A, Le Gall Y, Rochas C, Kloareg B (1991) Purification and characterization of a new κ-carrageenase from a marine Cytophaga-like bacterium. Eur J Biochem 201:241–247

    Article  CAS  PubMed  Google Scholar 

  • Potin P, Richard C, Barbeyron T, Henrissat B, Gey C, Petillot Y, Forest E, Dideberg O, Rochas C, Kloareg B (1995) Processing and hydrolytic mechanism of the cgkA-encoded κ-carrageenase of Alteromonas carrageenovora. Eur J Biochem 228:971–975

    Article  CAS  PubMed  Google Scholar 

  • Préchoux A, Helbert W (2014) Preparation and detailed NMR analyses of a series of oligo α-carrageenans. Carbohydr Polym 101:864–870

    Article  CAS  PubMed  Google Scholar 

  • Préchoux A, Genicot S, Rogniaux H, Helbert W (2013) Controlling carrageenan structure using a novel formylglycine-dependent sulfatase, an endo-4S-iota-carrageenan sulfatase. Mar Biotechnol 15:265–274

    Article  CAS  PubMed  Google Scholar 

  • Préchoux A, Genicot S, Rogniaux H, Helbert W (2016) Enzyme-assisted preparation of furcellaran-like κ-/β-carrageenan. Mar Biotechnol 18:133–143

    Article  CAS  PubMed  Google Scholar 

  • Pujol CA, Scolaro LA, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB (2006) Antiviral activity of a carrageenan from Gigartinatina skottsbergii against intraperitoneal murine herpes simplex virus infection. Planta Med 72:121–125

    Article  CAS  PubMed  Google Scholar 

  • Puligundla P, Poludasu RM, Rai JK, Obulam VSR (2011) Repeated batch ethanolic fermentation of very high gravity medium by immobilized Saccharomyces cerevisiae. Ann Microbiol 61:863–869

    Article  CAS  Google Scholar 

  • Raman M, Devi V, Doble M (2015) Biocompatible ι-carrageenan-γ-maghemite nanocomposite for biomedical applications—synthesis, characterization and in vitro anticancer efficacy. J Nanobiotechnol 13:18

    Article  CAS  Google Scholar 

  • Rebuffet E, Barbeyron T, Jeudy A, Jam M, Czjzek M, Michel G (2010) Identification of catalytic residues and mechanistic analysis of family GH82 iota-carrageenases. Biochemistry 49:7590–7599

    Article  CAS  PubMed  Google Scholar 

  • Relleve L, Nagasawa N, Luan LQ, Yagi T, Aranilla C, Abad L et al (2005) Degradation of carrageenan by radiation. Polym Degrad Stab 87:403–410

    Article  CAS  Google Scholar 

  • Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhim J-W, Wang L-F (2014) Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 97:174–181

    Article  CAS  Google Scholar 

  • Rinas U, Hoffmann F (2004) Selective leakage of host-cell proteins during highcell-density cultivation of recombinant and non-recombinant Escherichia coli. Biotechnol Prog 20:679–687

    Article  CAS  PubMed  Google Scholar 

  • Rochas C, Lahaye M, Yaphe W (1986) Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot Mar 29:335–340

    Article  CAS  Google Scholar 

  • Rodrigues S, da Costa AMR, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89:282–289

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues S, Cordeiro C, Seijo B, Remuñán-López C, Grenha A (2015) Hybrid nanosystems based on natural polymers as protein carriers for respiratory delivery: stability and toxicological evaluation. Carbohydr Polym 123:369–380

    Article  CAS  PubMed  Google Scholar 

  • Rosario NL, Ghaly ES (2002) Matrices of water-soluble drug using natural polymer and direct compression method. Drug Dev Ind Pharm 28:975–988

    Article  CAS  PubMed  Google Scholar 

  • Rouzbehan S, Moein S, Homaei A, Moein MR (2017) Kinetics of α-glucosidase inhibition by different fractions of three species of Labiatae extracts: a new diabetes treatment model. Pharm Biol 55:1483–1488

    Article  CAS  PubMed  Google Scholar 

  • Running CA, Falshaw R, Janaswamy S (2012) Trivalent iron induced gelation in lambda-carrageenan. Carbohydr Polym 87:2735–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2006a) Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel beads for stability improvement using Doehlert shell design. J Pharm Sci 95:1994–2013

    Article  CAS  PubMed  Google Scholar 

  • Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2006b) Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Int J Pharm 312:1–14

    Article  CAS  PubMed  Google Scholar 

  • Santo VE, Frias AM, Carida M et al (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromol 10:1392–1401

    Article  CAS  Google Scholar 

  • Sarwar G, Matayoshi S, Oda H (1987) Purification of κ-carrageenase from marine Cytophaga species. Microbiol Immunol 31:869–877

    Article  CAS  PubMed  Google Scholar 

  • Sathuvan M, Thangam R, Gajendiran M et al (2017) κ-carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym 160:184–193

    Article  CAS  PubMed  Google Scholar 

  • Selvakumaran S, Muhamad II, Abd Razak SI (2016) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohydr Polym 135:207–214

    Article  CAS  PubMed  Google Scholar 

  • Sharifian S, Homaei A, Hemmati R, Khajeh K (2017) Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. J Photochem Photobiol B Biol 172:115–128

    Article  CAS  Google Scholar 

  • Sharifzadeh G, Wahit MU, Soheilmoghaddam M et al (2016) Kappa-carrageenan/halloysite nanocomposite hydrogels as potential drug delivery systems. J Taiwan Inst Chem Eng 67:426–434

    Article  CAS  Google Scholar 

  • Shojaei F, Homaei A, Taherizadeh MR, Kamrani E (2017) Characterization of Biosynthesized chitosan nanoparticles from Penaeus vannamei for immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop. https://doi.org/10.1080/10942912.2017.1345935

    Article  Google Scholar 

  • Sjöberg H, Persson S, Caram-Lelham N (1999) How interactions between drugs and agarose-carrageenan hydrogels influence the simultaneous transport of drugs. J Control Release 59:391–400

    Article  PubMed  Google Scholar 

  • Smith RG, Bidwell RGS (1989) Inorganic carbon uptake by photosynthetically active protoplasts of the red macroalga Chondrus crispus. Mar Biol 102:1–4

    Article  CAS  Google Scholar 

  • Snelgrove P (2016) An ocean of discovery: biodiversity beyond the census of marine life. Planta Med 82:790–799

    Article  CAS  PubMed  Google Scholar 

  • Sodini I, Boquien CY, Corrieu G, Lacroix C (1997a) Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. J Ind Microbiol Biotechnol 18:56–61

    Article  CAS  PubMed  Google Scholar 

  • Sodini I, Boquien CY, Corrieu G, Lacroix C (1997b) Microbial dynamics of co- and separately entrapped mixed cultures of mesophilic lactic acid bacteria during the continuous prefermentation of milk. Enzyme Microb Technol 20:381–388

    Article  CAS  PubMed  Google Scholar 

  • Sroka P, Satora P, Tarko T, Duda-Chodak A (2017) The influence of yeast immobilization on selected parameters of young meads. J Inst Brew 123:289–295

    Article  CAS  Google Scholar 

  • Sun F, Ma Y, Wang Y, Liu Q (2010) Purification and characterization of novel κ-carrageenase from marine Tamlana sp. HC4. Chin J Oceanol Limnol 28:1139–1145

    Article  CAS  Google Scholar 

  • Sun Y, Liu Y, Jiang K et al (2014) Electrospray Ionization mass spectrometric analysis of κ-carrageenan oligosaccharides obtained by degradation with κ-carrageenase from Pedobacter hainanensis. J Agric Food Chem 62:2398–2405

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Yang B, Wu Y, Liu Y, Gu X, Zhang H, Wang C, Cao H, Huang L, Wang Z (2015) Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem 178:311–318

    Article  CAS  PubMed  Google Scholar 

  • Swain MR, Natarajan V, Krishnan C (2017) Bioethanol from marine sources marine enzymes and microorganisms for bioethanol production. In: Advances in food and nutrition research, pp 181–197

  • Talarico LB, Damonte EB (2007) Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363:473–485

    Article  CAS  PubMed  Google Scholar 

  • Talarico LB, Noseda MD, Ducatti DRB, Duarte ME, Damonte EB (2011) Differential inhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J Gen Virol 92:1332–1342

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wang M, Zhou Q, Nagata S (2011) Improved composting of Undaria pinnatifida seaweed by inoculation with Halomonas and Gracilibacilus sp. isolated from marine environments. Bioresour Technol 102:2925–2930

    Article  CAS  PubMed  Google Scholar 

  • Tapia C, Escobar Z, Costa E, Sapag-Hagar J, Valenzuela F, Basualto C, Gai MN, Yazdani-Pedram M (2004) Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm 57:65–75

    Article  CAS  PubMed  Google Scholar 

  • Tapia C, Corbalán V, Costa E et al (2005) Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan alginate and chitosan carrageenan mixtures. Biomacromol 6:2389–2395

    Article  CAS  Google Scholar 

  • Thakur NL, Thakur A (2006) Marine biotechnology: an overview. Indian J Biotechnol 5:263–268

    CAS  Google Scholar 

  • Therkelsen GH (1993) Cangeenan. In: Whistler RL, BeMiller JN (eds) Industrial gums polysaccharide derivatives. Academic Press, San Diego, pp 145–180

    Chapter  Google Scholar 

  • Thrash JC, Cho JC, Vergin KL, Morris RM, Giovannoni SJ (2010) Genome sequence of Lentisphaera araneosa HTCC2155T, the type species of the order Lentisphaerales in the phylum Lentisphaerae. J Bacteriol 192:2938–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrimawithana TR, Young SA, Bunt CR, Green CR, Alany RG (2011) In-vitro and in vivo evaluation of carrageenan/methylcellulose polymeric systemsfor transscleral delivery of macromolecules. Eur J Pharm Sci 44:399–409

    Article  CAS  PubMed  Google Scholar 

  • Tobacman JK (2001) Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect 109:983–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoda K, Asahiyama M, Ohtsuki E et al (2009) Preparation and properties of carrageenan microspheres containing allopurinol and local anesthetic agents for the treatment of oral mucositis. Colloids Surf B Biointerfaces 71:27–35

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2013) Biocatalytic processes using marine biocatalysts: ten cases in point. Curr Org Chem 17:1058–1066

    Article  CAS  Google Scholar 

  • Trincone A (2017) Enzymatic processes in marine biotechnology. Mar Drugs 15:93

    Article  CAS  PubMed Central  Google Scholar 

  • Tuleu C, Khela MK, Evans DF, Jones BE, Nagata S, Basit AW (2007) Ascintigraphic investigation of the disintegration behaviour of capsules in fastingsubjects: a comparison of hypromellose capsules containing carrageenan as agelling agent and standard gelatin capsules. Eur J Pharm Sci 30:251–255

    Article  CAS  PubMed  Google Scholar 

  • Vadlapatla R, Fifer EK, C-j Kim, Alexander KS (2009) Drug-organic electrolyte complexes as controlled release systems. Drug Dev Ind Pharm 35:1–11

    Article  CAS  PubMed  Google Scholar 

  • Van De Velde F, Peppelman HA, Rollema HS, Hans R (2001) On the structure of κ/ι-hybrid carrageenans. Carbohydr Res 331:271–283

    Article  PubMed  Google Scholar 

  • Van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS (2002a) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92

    Article  Google Scholar 

  • van de Velde F, Lourenço ND, Pinheiro HM (2002b) Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal 334:815–835

    Article  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Anil S, Kim S-K, Shim M (2016) Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers (Basel) 8:30

    Article  CAS  Google Scholar 

  • Venugopal V (2011) Polysaccharide from seaweed and microalgae. In: Zollo S (ed) Marine polysaccharides. Taylor and Francis Group, Boca Raton, pp 111–122

    Chapter  Google Scholar 

  • Wang Y-Z, Liao Q, Zhu X et al (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresour Technol 101:4034–4041

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang P, Hao C, Zhang X-E, Cui Z-Q, Guan H-S (2011) In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus. Antiviral Res 92:237–246

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang P, Yu G-L, Li C-X, Hao C, Qi X, Zhang L-J, Guan H-S (2012) Preparation and anti-influenza A virus activity of κ-carrageenan oligosaccharide and its sulphated derivatives. Food Chem 133:880–888

    Article  CAS  Google Scholar 

  • Wang T, Hu Q, Zhou M et al (2016) Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology. Int J Pharm 511:219–222

    Article  CAS  PubMed  Google Scholar 

  • Wecker P, Klockow C, Schüler M, Dabin J, Michel G, Glöckner FO (2010) Life cycle analysis of the model organism Rhodopirellula baltica SH 1T by transcriptome studies. Microb Biotechnol 3:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Weigl J, Yaphe W (1966) The enzymatic hydrolysis of carrageenan by Pseudomonas carrageenovora: purification of a κ-carrageenase. Can J Microbiol 12:939–947

    Article  CAS  PubMed  Google Scholar 

  • Weiner ML (2014) Food additive carrageenan: part II: A critical review of carrageenan in vivo safety studies. Crit Rev Toxicol 44:244–269

    Article  CAS  PubMed  Google Scholar 

  • Weiner ML (2016) Parameters and pitfalls to consider in the conduct of food additive research, Carrageenan as a case study. Food Chem Toxicol 87:31–44

    Article  CAS  PubMed  Google Scholar 

  • Weiner ML, Ferguson HE, Thorsrud BA et al (2015) An infant formula toxicity and toxicokinetic feeding study on carrageenan in preweaning piglets with special attention to the immune system and gastrointestinal tract. Food Chem Toxicol 77:120–131

    Article  CAS  PubMed  Google Scholar 

  • Wijesekara I, Pangestuti R, Kim S-K (2011) Biological activities and potentialhealth benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21

    Article  CAS  Google Scholar 

  • Wu S-J (2012) Degradation of κ-carrageenan by hydrolysis with commercial á-amylase. Carbohydr Polym 89:394–396

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhu Y, Ni H, Cai H, Li L, Xiao A (2015) Isolation, identification of a κ-carrageenase-producing bacterium and κ-carrageenase characterization. Wei Sheng Wu Xue Bao = Acta Microbiol Sinica 55:140–148

    CAS  Google Scholar 

  • Yamada T, Ogamo A, Saito T, Watanabe J, Uchiyama H, Nakagawa Y (1997) Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr Polym 32:51–55

    Article  CAS  Google Scholar 

  • Yamada T, Ogamo A, Saito T, Uchiyama H, Nakagawa Y (2000) Preparation of O-acylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect. Carbohydr Polym 41:115–120

    Article  CAS  Google Scholar 

  • Yao Z, Zhang C, Lu F, Bie X, Lu Z (2012) Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2. Appl Microbiol Biotechnol 5:1999–2009

    Article  CAS  Google Scholar 

  • Yao Z, Wang F, Gao Z, Jin L, Wu H (2013) Characterization of a κ-carrageenase from marine Cellulophaga lytica strain N5-2 and analysis of its degradation products. Int J Mol Sci 14:24592–24602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Wu H, Zhang S, Du Y (2014) Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr Polym 30:359–367

    Article  CAS  Google Scholar 

  • Yilmaz P, Kottmanna R, Pruesse E, Quast C, Oliver Glöckne F (2011) Analysis of 23S rRNA genes in metagenomes—a case study from the Global Ocean Sampling Expedition. Syst Appl Microbiol 34:462–469

    Article  CAS  PubMed  Google Scholar 

  • Youssef AS, Beltagy EA, El-Shenawy MA (2012) Production of κ-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr J Microbiol Res 6:6618–6628

    Article  CAS  Google Scholar 

  • Yuan Y, Luan X, Rana X et al (2017) Covalent immobilization of cellulase in application of biotransformation of ginsenoside Rb1. J Mol Catal B Enzym 133:S525–S532

    Article  Google Scholar 

  • Yun EJ, Kim HT, Cho KM et al (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

    Article  CAS  PubMed  Google Scholar 

  • Zablackis E, Vreeland V, Kloareg B (1993) Isolation of protoplasts from kappaphycus alvarezii var. tambalang (Rhodophyta) and secretion of carrageenan fragments by cultured cells. J Exp Bot 44:1515–1522

    Article  CAS  Google Scholar 

  • Zeinali F, Homaei A, Kamrani E (2015) Sources of marine superoxide dismutases: characteristics and applications. Int J Biol Macromol 79:627–637

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang R, Chen L, McClements DJ (2016) Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: impact of environmental conditions on enzyme activity. Food Chem 200:69–75

    Article  CAS  PubMed  Google Scholar 

  • Zhou MH, Ma JS, Li J, Ye H, Huang K, Zhao X (2008) A kappa-carrageenase from a newly isolated Pseudoalteromonas-like bacterium, WZUC10. Biotechnol Bioprocess Eng 13:545–551

    Article  CAS  Google Scholar 

  • Zhu B, Ning L (2016) Purification and characterization of a New κ-carrageenase from the marine bacterium Vibrio sp. NJ-2. J Microbiol Biotechnol 26:255–262

    Article  CAS  PubMed  Google Scholar 

  • Zia KM, Tabasum S, Nasif M et al (2017) A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 96:282–301

    Article  CAS  PubMed  Google Scholar 

  • Ziayoddin M, Lalitha J, Shinde M (2014) Increased production of carrageenase by Pseudomonas aeruginosa ZSL-2 using Taguchi experimental design. Int Lett Nat Sci 12:194–207

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the research council of the University of Hormozgan for financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Homaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbarzadeh, M., Golmoradizadeh, A. & Homaei, A. Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes. Phytochem Rev 17, 535–571 (2018). https://doi.org/10.1007/s11101-018-9548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9548-2

Keywords

Navigation