Phytochemistry Reviews

, Volume 14, Issue 6, pp 993–1018 | Cite as

Artichoke: botanical, agronomical, phytochemical, and pharmacological overview

  • Bruna de Falco
  • Guido Incerti
  • Mariana Amato
  • Virginia Lanzotti


Artichoke, Cynara cardunculus, is a dietary and medicinal plant species with a long tradition of use dating back to the ancient Egyptians, Greeks, and Romans. It comprises the globe artichoke, C. cardunculus subsp. scolymus, the cultivated cardoon, C. cardunculus subsp. altilis, and the wild cardoon, C. cardunculus subsp. sylvestris. The edible part of the plant is limited to the fleshy leaves (bracts) and receptacle of a large immature inflorescence, named capitulum or head, that has been shown to be a rich source of bioactive compounds. On the other hand, leaves, external bracts and stems discarded by the artichoke processing industry corresponding to about 80–85 % of the total biomass of the plant, represent a suitable potential source of food additives and nutraceuticals. Nutritional and pharmacological properties of artichoke heads and leaves are attributed mainly to polyphenolic compounds and inulin present at high concentration. Other classes of chemical compounds, including flavonoids, anthocyanins, sesquiterpenes, and triterpenes have been also found in the plant at lower amounts. This review, after a general historical, phytogeographical, and ethnobotanical overview, summarizes the current knowledge on the phytochemistry and pharmacological properties of this plant, with special emphasis on the agronomical and nutritional importance of the plant and to the methods of analysis, including the recently developed metabolomic studies.


Caffeoylquinic acids Cynaracardunculus Flavonoids Inulin Terpenes 


  1. Abu-Reidah IM, Arráez-Román D, Segura-Carretero A et al (2013) Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD–ESI–QTOF–MS. Food Chem 141(3):2269–2277CrossRefPubMedGoogle Scholar
  2. Adzet T, Puigmacia M (1985) High-performance liquid chromatography of caffeoylquinic acid derivatives of Cynara scolymus L. leaves. J Chromatogr 348(2):447–453CrossRefGoogle Scholar
  3. Adzet T, Camarasa J, Laguna JC (1987) Hepatoprotective activity of polyphenolic compounds in isolated rat hepatocytes from Cynara scolymus against CCl4 toxicity: in isolated rat hepatocytes. J Nat Prod 50(4):612–617CrossRefPubMedGoogle Scholar
  4. Akihisa T, Yasukawa K, Oinuma H et al (1996) Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochemistry 43(6):1255–1260CrossRefPubMedGoogle Scholar
  5. Aljancić I, Vajs V, Menković N et al (1999) Flavones and sesquiterpene lactones from Achillea atrata subsp. multifida: antimicrobial activity. J Nat Prod 62:909–911CrossRefPubMedGoogle Scholar
  6. Amato M, D’Orilia F, Gay V et al (2011) Multifunctional agriculture and sustainability in the Cilento Geopark. In: Dolven JK, Ramsay T, Rangnes K (eds) Proceedings of the 10th European geoparks conference. European Geoparks Network, Porsgrunn, pp 41–48Google Scholar
  7. Archontoulis SV, Struik PC, Vos J et al (2010) Phenological growth stages of Cynara cardunculus: codification and description according to the BBCH scale. Ann Appl Biol 156:253–270CrossRefGoogle Scholar
  8. Aubert S, Foury C (1981) Couleur et pigmentation anthocyanique de l’artichaut (Cynara scolymus L). In: Marzi V, Lattanzio V (eds) Studi sul Carciofo. Laterza, Bari, pp 57–76Google Scholar
  9. Barbetti P, Chiappini I, Fardella G et al (1993) Grosulfeimin and new related guaianolides from Cynara scolymus L. Nat Prod Lett 3:21–30CrossRefGoogle Scholar
  10. Bianco VV (1990) Carciofo (Cynara scolymus L.). In: Bianco VV, Rimpini F (eds) Orticoltura. Patron, BolognaGoogle Scholar
  11. Brown JE, Rice-Evans C (1998) Luteolin-rich artichoke extract protects low-density lipoprotein from oxidation in vitro. Free Radic Res 29:247–255CrossRefPubMedGoogle Scholar
  12. Cantore V, Boari F (2009) Irrigazione e Salinità. In: Calabrese N (ed) Il carciofo e il cardo. Script, Bologna, pp 190–197Google Scholar
  13. Cao X, Xiao H, Zhang Y et al (2010) 1,5 Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res 1347:142–148CrossRefPubMedGoogle Scholar
  14. Causey BSJL, Feirtag JM, Gahaher DD et al (2000) Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr Res 20(2):19l–201CrossRefGoogle Scholar
  15. Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378CrossRefGoogle Scholar
  16. Chevallier A (1996) The encyclopedia of medicinal plants. DK Publishing, New York, pp 96–97Google Scholar
  17. Choi SZ, Choi SU, Lee KR (2005) Cytotoxic sesquiterpene lactones from Saussurea calcicola. Arch Pharm Res 28:1142–1146CrossRefPubMedGoogle Scholar
  18. Christaki E, Bonos E, Florou-Paneri PC (2012) Nutritional and functional properties of Cynara crops (globe artichoke and cardoon) and their potential applications: a review. Int J Appl Sci Technol 2:64–70Google Scholar
  19. Clifford M (2000) Chlorogenic acids and other cinnamates: nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043CrossRefGoogle Scholar
  20. De Falco E, di Novella N (2011) Guida alle piante tintorie del Cilento e Vallo di Diano. MIdA, MilanGoogle Scholar
  21. de Falco B, Incerti G, Pepe R et al (2015) Metabolomic fingerprinting of artichoke, Cynara cardunculus, using nuclear magnetic resonance and multivariate data analysis. In: Proceedings of the Phytochemical Society of Europe (PSE), future trends in phytochemistry in the global era of agri-food and health II: a young scientist meeting, 27–30/4/2015, Murcia. ISBN 978-0-9565472-6-2, pp 72–73Google Scholar
  22. Ding Y, Nguyen HT, Kim SI et al (2009) The regulation of inflammatory cytokine secretion in macrophage cell line by the chemical constituents of Rhus sylvestris. Bioorg Med Chem Lett 19:3607–3610CrossRefPubMedGoogle Scholar
  23. Dranik LI, Chernobai VT (1966) A new flavonoid isolated from the leaves of Cynara scolymus L. Chem Nat Compd 2(1):16–20CrossRefGoogle Scholar
  24. Dranik LI, Chernobai VT, Kolesnikov DG (1964) Polyphenolic compounds of Cynara scolymus. Med Prom SSSR 18:23PubMedGoogle Scholar
  25. Durazzo A, Foddai MS, Temperini A et al (2013) Antioxidant properties of seeds from lines of artichoke, cultivated cardoon and wild cardoon. Antioxidants 2:52–61CrossRefGoogle Scholar
  26. Falleh H, Ksouri R, Chaieb K et al (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C R Biol 331:372–379CrossRefPubMedGoogle Scholar
  27. FAO (2013) Faostat, crop production. Food and Agriculture Organization of the United Nations. 21 May 2013
  28. Farag MA, El-Ahmady SH, Elian FS et al (2013) Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Phytochemistry 95:177–187CrossRefPubMedGoogle Scholar
  29. Fleming T (ed) (1998) PDR for herbal medicines. Medical Economics Company, Montvale, pp 793–794Google Scholar
  30. Foury C, Aubert S (1977) Observations preliminaries sur la presence et la repartition de pigments anthocyaniques dans un mutant d’artichaut (Cynara scolymus L.) a fleur blanches. Ann Amélior Plant 27:603–612Google Scholar
  31. Fratianni F, Tucci M, De Palma M et al (2007) Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem 104:1282–1286CrossRefGoogle Scholar
  32. Fritsche J, Beindorff CM, Dachtler M et al (2002) Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. Eur Food Res Technol 215:149–157CrossRefGoogle Scholar
  33. Gallaher DD, Stallings WH, Blessing LL et al (1996) Probiotics, cecal microflora, and aberrant cryps in the rat colon. J Nutr 126:1362–1371PubMedGoogle Scholar
  34. Garbetta A, Capotorto I, Cardinali A et al (2014) Antioxidant activity induced by main polyphenols present in edible artichoke heads: influence of in vitro gastro-intestinal digestion. J Funct Food 10:456–464CrossRefGoogle Scholar
  35. Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol 144(2):279–286CrossRefPubMedGoogle Scholar
  36. Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 286:1122–1128PubMedGoogle Scholar
  37. Gebhardt R (2000) Choleretic and anticholestatic activities of flavonoids of artichoke (Cynara cardunculus L. subsp. scolymus L. Hayek). Acta Hortic 681:429–436Google Scholar
  38. Gebhardt R (2001) Anticholestatic activity of flavonoids from artichoke (Cynara scolymus L.) and of their metabolites. Med Sci Monit 7:316–320PubMedGoogle Scholar
  39. Gibson GR, Beatty ER, Wang X (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982CrossRefPubMedGoogle Scholar
  40. Gonthier MP, Verny MA, Besson C et al (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133:1853–1859PubMedGoogle Scholar
  41. Hădărugăa NG, Hădărugăb DI, Tatuc C et al (2009) Multivariate analysis (PCA) in Compositae biocompounds class. J Agroaliment Proc Technol 15(2):201–210Google Scholar
  42. Hay AJ, Hamburger M, Hostettmann K et al (1994) Toxic inhibition of smooth muscle contractility by plant-derived sesquiterpenes caused by their chemically reactive alpha-methylenebutyrolactone functions. Br J Pharmacol 112(1):9–12PubMedCentralCrossRefPubMedGoogle Scholar
  43. Incerti G, Romano A, Termolino P et al (2013) Metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis as a tool for biodiversity informatics: a case study on the classification of Rosa x damascena. Plant Biosys 147(4):947–954CrossRefGoogle Scholar
  44. Krimkova L, Mučaji P, Nagy M et al (2004) Triterpenoid cynarasaponins from Cynara cardunculus L. reduce chemically induced mutagenesis in vitro. Phytomedicine 11:673–678CrossRefGoogle Scholar
  45. Lanteri S, Portis E (2008) Globe artichoke and cardoon. In: Prohens J, Nuez F (eds) Vegetables: handbook of plant breeding, vol 1. Springer, New York, pp 49–74CrossRefGoogle Scholar
  46. Lattanzio V (1982) Composizione, valore nutritivo e terapeutico del carciofo. Inf Agrar 38(1):18727CrossRefGoogle Scholar
  47. Lattanzio V, Morone I (1979) Variations of the orthodiphenol content in Cynara scolymus L. during the plant growing season. Experientia 35:993–994CrossRefGoogle Scholar
  48. Lattanzio V, Van Sumere CF (1987) Changes in phenolic compounds during the development and cold storage of artichoke. Food Chem 24(1):37–50CrossRefGoogle Scholar
  49. Lattanzio V, Kroon PA, Linsalata V et al (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Food 1:131–144CrossRefGoogle Scholar
  50. Llorach R, Espin JC, Tomás-Barberán FA et al (2002) Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. J Agric Food Chem 50(12):3458–3464CrossRefPubMedGoogle Scholar
  51. Lombardo S, Pandino G, Mauromicale G et al (2010) Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem 119:1175–1181CrossRefGoogle Scholar
  52. Lopez-Molina D, Navarro-Martınez MD, Rojas-Melgarejo F et al (2005) Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 66:1476–1484CrossRefPubMedGoogle Scholar
  53. Marzi V, Lattanzio V (1981) Studi sul carciofo. Laterza, Bari, pp 1126Google Scholar
  54. Meyer D, Bayarri S, Tárrega A et al (2011) Inulin as texture modifier in dairy products. Food Hydrocoll 25:1881–1890CrossRefGoogle Scholar
  55. Nishizawa M, Fujimoto Y (1986) Isolation and structural elucidation of a new lipoxygenase inhibitor from Gardeniae fructus. Chem Pharm Bull 34:1419–1421CrossRefPubMedGoogle Scholar
  56. Nishizawa M, Izuhara R, Kaneko K et al (1987) 3-Caffeoyl-4-sinapoylquinic acid, a novel lipoxygenase inhibitor from Gardeniae fructus. Chem Pharm Bull 35:2133–2135CrossRefPubMedGoogle Scholar
  57. Nissler L, Gebhardt R, Berger S (2004) Flavonoid binding to a multi-drug-resistance transporter protein: an STD-NMR study. Anal Bioanal Chem 379:1045–1049PubMedGoogle Scholar
  58. Pandino G, Courts FL, Lombardo S et al (2010) Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J Agric Food Chem 58:1026–1031CrossRefPubMedGoogle Scholar
  59. Pandino G, Lombardo S, Mauromicale G et al (2011a) Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem 126:417–442CrossRefGoogle Scholar
  60. Pandino G, Lombardo S, Mauromicale G et al (2011b) Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J Food Compos Anal 24:148–153CrossRefGoogle Scholar
  61. Pandino G, Lombardo S, Mauromicale G (2013) Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind Crop Prod 44:44–49CrossRefGoogle Scholar
  62. Panizzi L, Scarpati ML (1954) Constitution of cynarine, the active principle of the artichoke. Nature 174:1062–1063CrossRefGoogle Scholar
  63. Pérez-García F, Adzet T, Cañigueral S (2000) Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res 33(5):661–665CrossRefPubMedGoogle Scholar
  64. Pifferi PG, Vaccari A (1978) Studi sui pigmenti naturali. X. Gli antociani del carciofo (Cynara scolymus L.). Ind Conserv 55:107–110Google Scholar
  65. Pignone D, Sonnante G (2004) Wild artichokes of south Italy: did the story begin here? Genet Resour Crop Evol 51(6):577–580CrossRefGoogle Scholar
  66. Pignone D, Sonnante G (2009) Origine ed evoluzione. In: Calabrese N (ed) Il carciofo e il cardo. Script, Bologna, pp 2–11Google Scholar
  67. Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr 93(1):73–90CrossRefGoogle Scholar
  68. Pool-Zobel B, Van Loo J, Rowland I et al (2002) Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr 87(2):273–281CrossRefGoogle Scholar
  69. Portis E, Mauromicale G, Barchi L et al (2005) Population structure and genetic variation in autochthonous globe artichoke germplasm from Sicily Island. Plant Sci 168:1591–1598CrossRefGoogle Scholar
  70. Preziosi P, Loscalzo B, Marmo E (1959) Comparison of choleretic effects of CYN and Na-dehydrocholate. Experientia 15:135–138CrossRefPubMedGoogle Scholar
  71. Raccuia SA, Melilli MG, Scandurra S (2004) Potential utilisation of globe artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hegi] crop residues: biomass for energy and roots for inulin production. Acta Hortic 660:607–613CrossRefGoogle Scholar
  72. Ramos PAB, Guerra ÂR, Guerreiro O et al (2013) Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds. J Agric Food Chem 61:8420–8429CrossRefPubMedGoogle Scholar
  73. Ramos PAB, Santos SAO, Guerra ÂR et al (2014) Phenolic composition and antioxidant activity of different morphological parts of Cynara cardunculus L. var. altilis (DC). Ind Crop Prod 61:460–471CrossRefGoogle Scholar
  74. Robenfroid MB (1999) Concepts in functional foods: the case of inulin and oligofructose. J Nutr 129:1398S–1401SGoogle Scholar
  75. Robinson WE, Cordeiro JRM, Abdel-Malek S et al (1996) Dicaffeoylquinic acid inhibitors of human immunodeficiency virus integrase: inhibition of the core catalytic domain of human immunodeficiency virus integrase. Mol Pharmacol 50(4):846–855PubMedGoogle Scholar
  76. Romani A, Pinelli P, Cantini C et al (2006) Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.). Food Chem 95:221–225CrossRefGoogle Scholar
  77. Rossoni G, Grande S, Galli C et al (2005) Wild artichoke prevents the age-associated loss of vasomotor function. J Agric Food Chem 53(26):10291–10296CrossRefPubMedGoogle Scholar
  78. Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58CrossRefGoogle Scholar
  79. Sánchez-Rabaneda F, Jáuregui O, Lamuela-Raventós RM et al (2003) Identification of phenolic compounds in artichoke waste by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1008:57–72CrossRefPubMedGoogle Scholar
  80. Sato Y, Itagaki S, Kurokawa T et al (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1–2):136–138CrossRefPubMedGoogle Scholar
  81. Schauenberg P, Paris F (1977) Guide to medicinal plants. Keats, New CanaanGoogle Scholar
  82. Schütz K, Kammerer D, Carle R et al (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and Pomace by HPLC–DAD–ESI/MS. J Agric Food Chem 52:4090–4096CrossRefPubMedGoogle Scholar
  83. Schütz K, Persike M, Carle R et al (2006) Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC–DADESI–MSn. Anal Bioanal Chem 384:1511–1517CrossRefPubMedGoogle Scholar
  84. Shimoda H, Ninomiya K, Nishida N et al (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 13:223–228CrossRefPubMedGoogle Scholar
  85. Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27(6):962–978PubMedCentralCrossRefPubMedGoogle Scholar
  86. Sonnante G, Carluccio AV, De Paolis A et al (2008) Identification of artichoke SSR markers: molecular variation and patterns of diversity in genetically cohesive taxa and wild allies. Genet Resour Crop Evol 55:1029–1046CrossRefGoogle Scholar
  87. Stewart ML, Timm DA, Slavin JL (2008) Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutr Res 28:329–334CrossRefPubMedGoogle Scholar
  88. Suchy M, Herout V, Sorm F (1960) On terpenes—CVI: on hydrogenation products of cynaropicrin, the bitter principle of artichoke (Cynara scolymus L.). Collect Czech Chem C 25:507–513CrossRefGoogle Scholar
  89. Takemura T, Urushisaki T, Fukuoka M et al (2012) 3,4 Dicaffeoylquinic acid, a major constituent of Brazilian propolis, increases TRAIL expression and extends the life times of mice infected with the influenza A virus. Evid Based Complement Alternat Med 946867:1–7CrossRefGoogle Scholar
  90. Tanaka YT, Tanaka K, Kojima H et al (2013) Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg Med Chem Lett 23:518–523CrossRefPubMedGoogle Scholar
  91. Tárrega A, Rocafull A, Costell E (2010) Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. Food Sci Technol 43:556–562Google Scholar
  92. Van Loo J, Cummings J, Delzenne N et al (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 81:121–132CrossRefPubMedGoogle Scholar
  93. Verpoorte R, Choi YH, Mustafa NR et al (2008) Metabolomics: back to basics. Phytochem Rev 7:525–537CrossRefGoogle Scholar
  94. Virdis A, Motzo R, Giunta F (2009) Key phenological events in globe artichoke (Cynara cardunculus var. scolymus) development. Ann Appl Biol 155(3):419–429CrossRefGoogle Scholar
  95. Virdis A, Motzo R, Giunta F (2014) The phenology of seed-propagated globe artichoke. Ann Appl Biol 164(1):128–137CrossRefGoogle Scholar
  96. Vitor CE, Figueiredo CP, Hara DB et al (2009) Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α- and β-amyrin, in a mouse model of colitis. Br J Pharmacol 157:1034–1044PubMedCentralCrossRefPubMedGoogle Scholar
  97. Wang M, Simon JE, Aviles IF et al (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608CrossRefPubMedGoogle Scholar
  98. Xiao HB, Cao X, Wang L et al (2011) 1,5-dicaffeoylquinic acid protects primary neurons from amyloid β1-42-induced apoptosis via PI3K/Akt signaling pathway. Chin Med J 124:2628–2635PubMedGoogle Scholar
  99. Yasukawa K, Kaminaga T, Kanno H (1996) Inhibitory effect of taraxastane-type triterpenes on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology 53(4):341–344CrossRefPubMedGoogle Scholar
  100. Yasukawa K, Matsubara H, Sano Y (2010) Inhibitory effect of the flowers of artichoke (Cynara cardunculus) on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. J Nat Med 64:388–391CrossRefPubMedGoogle Scholar
  101. Zha RP, Xu W, Wang WY et al (2007) Prevention of lipopolysaccharide-induced injury by 3,5-dicaffeoylquinic acid in endothelial cells. Acta Pharmacol Sin 28(8):1143–1148CrossRefPubMedGoogle Scholar
  102. Zhu X, Zhang H, Lo R (2004) Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem 52:7272–7278CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Bruna de Falco
    • 1
  • Guido Incerti
    • 1
  • Mariana Amato
    • 2
  • Virginia Lanzotti
    • 1
  1. 1.Dipartimento di AgrariaUniversità di Napoli “Federico II”Portici, NaplesItaly
  2. 2.Scuola di Scienze Agrarie, Forestali, Alimentari ed AmbientaliUniversità della BasilicataPotenzaItaly

Personalised recommendations