Phytochemistry Reviews

, Volume 15, Issue 5, pp 813–827 | Cite as

Phytochemistry and pharmacological activities of Vaccaria hispanica (Miller) Rauschert: a review

  • Guohong Zhou
  • Liying Tang
  • Ting Wang
  • Xidan Zhou
  • Zhenzhen Kou
  • Jing Wu
  • Zhuju Wang


Vaccaria hispanica is utilized medicinally both in China and Turkey. Phytochemical screenings demonstrated that the phytochemical diversity of V. hispanica at least includes 63 distinct metabolites, embracing triterpenoid saponins, cyclic peptides, flavonoids and others. The pharmacological studies confirmed that the crude extracts or purified compounds from the plant showed galactopoietic activity, antitumor activity, effect on the blood and vessel, antioxidant activity, ameliorative effect on osteopenia and others. The present paper is aimed to provide a critical analysis of data from scientific evaluations and aimed to find out the linkage of the medicinal uses to the scientific studies. Simultaneously, the possible future direction and perspective for investigations are discussed, as well.


Antitumor activity Cyclic peptide Vaccaria hispanica Galactopoietic activity 



We are grateful to Prof. Michael Heinrich, Prof. R. Verpoorte, Sarahann Kolder and reviewers, for their valuable comments and suggestions.


  1. Alspach E, Flanagan KC, Luo X et al (2014) P38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov 4:716–729CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Gene Dev 22:1276–1312CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baeva RT, Karryev MO, Litvinenko VI et al (1974a) Glycosides of Vaccaria segetalis V-Vacarine. Chem Nat Compd 10:171–176Google Scholar
  4. Baeva RT, Karriev MO, Abubakirov NK (1974b) Glycosides from Vaccaria segetalis VII-Composition of vaccegoside B. Chem Nat Compd 10:834–835Google Scholar
  5. Baeva RT, Karryev MO, Gorovits TT et al (1975) Glycosides of Vaccaria segelatis VIII-Structure of vaccegoside C. Chem Nat Compd 11:693–694Google Scholar
  6. Balsevich JJ, Ramirez-Erosa I, Hickie RA et al (2012) Antiproliferative activity of Saponaria vaccaria constituents and related compounds. Fitoterapia 83:170–181CrossRefPubMedGoogle Scholar
  7. Barber CJS, Pujara PT, Reed DW et al (2013) The two-step biosynthesis of cyclic peptides from linear precursors in a member of the plant family Caryophyllaceae Involves cyclization by a serine protease-like enzyme. J Biol Chem 288:12500–12510CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cakilcioglu U, Turkoglu I (2010) An ethnobotanical survey of medicinal plants in Sivrice (Elazig-Turkey). J Ethnopharmacol 132:165–175CrossRefPubMedGoogle Scholar
  9. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69:4–10CrossRefPubMedGoogle Scholar
  10. Committee for Chinese Veterinary Pharmacopoeia (2010) Chinese veterinary pharmacopoeia China. Agriculture Press, BeijingGoogle Scholar
  11. Committee for the Pharmacopoeia of China (2010) Pharmacopoeia of China Part I China. Medical Science and Technology Press, Beijing, p 49Google Scholar
  12. Condie JA, Nowak G, Reed DW et al (2011) The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors. Plant J 67:682–690CrossRefPubMedGoogle Scholar
  13. Dahiya R (2007) Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. Acta Pol Pharm 64:509–516PubMedGoogle Scholar
  14. Dahiya R, Kaur K (2007) Synthetic and biological studies on natural cyclic heptapeptide: segetalin E. Arch Pharm Res 30:1380–1386CrossRefPubMedGoogle Scholar
  15. Dahiya R, Kaur K (2008) Synthesis and pharmacological investigation of segetalin C as a novel antifungal and cytotoxic agent. Arzneimittel-Forsch 58:29–34Google Scholar
  16. Dang XF (2014) Study on the anti-inflammatory analgesic active site selection on semen vaccariae and its mechanism. Dissertation, Shaanxi Normal UniversityGoogle Scholar
  17. Dinda B, Debnath S, Mohanta BC et al (2010) Naturally occurring triterpenoid saponins. Chem Biodivers 7:2327–2580CrossRefPubMedGoogle Scholar
  18. Ding YY (2008) Study on the influence of cowherb seed and Radix Astragali on proliferation of bovine mammary gland epithelial cells in vitro and secretion function. Dissertation, Agricultural university of NanjingGoogle Scholar
  19. E JH, Niu CQ, Hu JM et al (2007) Study on the effect of semen Vaccariae on isolated rabbit aortic diastolic function. J Sichuan Trad Chin Med 25:13–15Google Scholar
  20. El-Seedi HR, El-Barbary MA, El-Ghorab DMH et al (2010) Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem 17:854–901CrossRefPubMedGoogle Scholar
  21. Feng AC (1998) Study on the blood viscosity improvement of semen vaccariae in blood stasis model in guinea pig. Lishizhen Med Materia Med Res 9:55Google Scholar
  22. Feng L, Hua H, Qiu LY et al (2009) Study on efficacy of Vaccaria segetalis extract for inhibiting angiogenesis. Chin Trad Herbal Drugs 40:1949–1952Google Scholar
  23. Feng X, Wang LL, Deng JG et al (2010) GC-MS analysis of chemical constituents of volatile oil from semen Vaccariae. Guangxi J Trad Chin Med 33:56–57Google Scholar
  24. Feng L, Zhang X, Hua H et al (2012) Vaccaria segetalis extract can inhibit angiogenesis. Asian Biomed 6:683–692Google Scholar
  25. Gao YY (2010) Extraction and separation of the effective anti-angiogenesis part of semen Vaccariae and activity evaluation. Dissertation, Jiangnan UniversityGoogle Scholar
  26. Güçlü-Üstündağ Ö, Mazza G (2008) Extraction of saponins and cyclopeptides from cow cockle seed with pressurized low polarity water. LWT-Food Sci Technol 41:1600–1606CrossRefGoogle Scholar
  27. Güçlü-Üstündağ Ö, Mazza G (2009) Effects of pressurized low polarity water extraction parameters on antioxidant properties and composition of cow cockle seed extracts. Plant Foods for Hum Nutr 64:32–38CrossRefGoogle Scholar
  28. Guo YX (2013) Effect of Vaccaria segetalis extract on mid lactation dairy cows production performance and blood index. Dissertation, Henan Agricultural UniversityGoogle Scholar
  29. Hsieh CH, Su T, Fang Y et al (2012) Efficacy of two different materials used in auricular acupressure on weight reduction and abdominal obesity. Am J Chinese Med 40:713–720CrossRefGoogle Scholar
  30. Hua H, Feng L, Zhang XP et al (2009) Study on the anti-angiogenesis of active substances in cowherb seed. Lishizhen Med Materia Medica Res 20:698–700Google Scholar
  31. Huo DZ (2009) Curative effect observation on treatment of 115 cases of chronic prostatitis using semen Vaccariae Decoction. Hebei J Trad Chin Med 31:1052Google Scholar
  32. Itokawa H, Yun Y, Morita H et al (1995) Estrogen-like activity of cyclic peptides from Vaccaria segetalis extracts. Planta Med 61:561–562CrossRefPubMedGoogle Scholar
  33. Jia Z, Koike K, Kudo M et al (1998) Triterpenoid saponins and sapogenins from Vaccaria segetalis. Phytochemistry 48:529–536CrossRefPubMedGoogle Scholar
  34. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175CrossRefPubMedGoogle Scholar
  35. Kay VR, Chambers C, Foster WG (2013) Reproductive and developmental effects of phthalate diesters in females. Crit Rev Toxicol 43:200–219CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kay VR, Bloom MS, Foster WG (2014) Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol 44:467–498CrossRefPubMedGoogle Scholar
  37. Kazmi SN, Ahmed Z, Malik A (1989a) Vaccaxanthone, a novel xanthone acid from Saponaria vaccaria. Heterocycles 29:1923–1927CrossRefGoogle Scholar
  38. Kazmi SN, Ahmed Z, Malik A (1989b) Sapxanthone, a pentasubstituted xanthone from Saponaria vaccaria. Phytochemistry 28:3572–3574CrossRefGoogle Scholar
  39. Kazmi SN, Ahmed Z, Malik A (1990) Vaccariose, a new oligosaccharide from Saponaria vaccaria. Fitoterapia 61:223–225Google Scholar
  40. Khushbakatova ZA, Putiyeva ZM, Syrov VN et al (1993) Adjuvant activity of some triterpenic saponins. Pharm Chem J 27:48–52Google Scholar
  41. Koike K, Jia Z, Nikaido T (1998) Triterpenoid saponins from Vaccaria segetalis. Phytochemistry 47:1343–1349CrossRefPubMedGoogle Scholar
  42. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022CrossRefPubMedGoogle Scholar
  43. Kumar P, Khanna P (1993) Sterols and sapogenin from plant parts and tissue culture of Saponaria vaccaria Linn. J Indian Bot Soc 72:173–174Google Scholar
  44. Kumar P, Khanna P (1994) Flavonoids from Saponaria vaccaria Linn. Indian J Plant Physiol 37:76–78Google Scholar
  45. Li CQ, Wang JZ, Zhang LY (2008) Comparative study on the antioxidant activity of the raw fried cowherb seed. J Chin Med Mat 31:820–822Google Scholar
  46. Li M, Li N, Dong HL et al (2012) Semen Vaccariae promoting the signal transduction of cow mammary gland of the lactating way. China Dair Ind 40:8–10Google Scholar
  47. Li N, Ma ZH, Liu D et al (2013) Analysis of chemical constituents of fried cowherb seed. Chin J Exp Trad Med Form 19:73–75Google Scholar
  48. Litvinenko VI, Amanmuradov K, Abubakirov NK (1967) Glycosides of vaccaria segetalis IV Isosaponarin. Chem Nat Comp 3:159–164CrossRefGoogle Scholar
  49. Liu FG, Shi JR, Zhang HQ et al (2000) Clinical and experimental study on semen Vaccariae in treatment of sudden deafness. Chin J Otorhinolaryngol Int Trad Western Med 8:4–8Google Scholar
  50. Liu R, Li Q, Huang J et al (2013) Proteomic identification of differentially expressed proteins in Vaccaria segetalis-treated dairy cow mammary epithelial cells. J Northeast Agric Univ 20:24–31Google Scholar
  51. Lu J, Lin YX, Ma SC (1998) The determination of hypaphorine and isosaponarin isolation and identification in semen Vaccariae. Chin J Pharm Anal 18:20–22Google Scholar
  52. Ma LP (2013) Discussion on the anti-angiogenesisactivity and mechanism of Albizzia julibrissin and seed of cowherb total saponins. Dissertation, Jiangnan UniversityGoogle Scholar
  53. Ma J, Ye WC, Wu HM et al (1999) Vaccariside, A novel saponin from Vaccaria segetalis (Neck) Garcke. Chin Chem Lett 10:921–924Google Scholar
  54. Ma J, He FH, Deng JZ et al (2001) Triterpenoid saponins from Vaccaria segetalis. Chin J Chem 19:606–611CrossRefGoogle Scholar
  55. Ma C, Fan M, Lin L et al (2008) Cytotoxic triterpenoid saponins from Vaccaria segetalis. J Asian Nat Prod Res 10:177–184CrossRefPubMedGoogle Scholar
  56. Mazza G, Biliaderis CG, Przybylski R et al (1992) Compositional and morphological characteristics of cow cockle (Saponaria vaccaria) seed a potential alternative crop. J Agric Food Chem 40:1520–1523CrossRefGoogle Scholar
  57. Meesapyodsuk D, Balsevich J, Reed DW et al (2007) Saponin biosynthesis in Saponaria vaccaria cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143:959–969CrossRefPubMedPubMedCentralGoogle Scholar
  58. Meng HY (2013) Effects of semen Vaccariae on dairy cow mammary gland epithelial cells of lactating signal transduction pathway. Dissertation, Northeast Agricultural UniversityGoogle Scholar
  59. Miao P (2007) Effect of Vaccaria segetalis extract on milk production and prolactin synthesis and release in rats. Dissertation, Henan Agricultural UniversityGoogle Scholar
  60. Morita H, Yun YS, Takeya K et al (1994) Segetalin A, A new cyclic hexapeptide from Vaccaria segetalis. Tetrahedron Lett 35:9593–9596CrossRefGoogle Scholar
  61. Morita H, Yun YS, Takeya K et al (1995) Segetalins B, C and D, three new cyclic peptides from Vaccaria segetalis. Tetrahedron 51:6003–6014CrossRefGoogle Scholar
  62. Morita H, Yun YS, Takeya K et al (1996a) New cyclic peptides segetalins from Vaccaria segetalis. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 38:289–294Google Scholar
  63. Morita H, Yun YS, Takeya K et al (1996b) A cyclic heptapeptide from Vaccaria segetalis. Phytochemistry 42:439–441CrossRefPubMedGoogle Scholar
  64. Morita H, Yun YS, Takeya K et al (1997) Vaccaroid A, a new triterpenoid saponin with contractility of rat uterine from Vaccaria segetalis. Bioorg Med Chem Lett 7:1095–1096CrossRefGoogle Scholar
  65. Morita H, Eda M, Iizuka T et al (2006) Structure of a new cyclic nonapeptide segetalin F and vasorelaxant activity of segetalins from Vaccaria segetalis. Bioorg Med Chem Lett 16:4458–4461CrossRefPubMedGoogle Scholar
  66. Niu CQ, Jin HE, Zhang TX (2014) Effects of semen Vaccariae on uterine smooth muscle in rats. Henan J Trad Chin Med 34:234–236CrossRefGoogle Scholar
  67. Qi P, Li Z, Chen M et al (2013) Metabolism and tissue distribution study of Vaccaria seeds (Wang-Bu-Liu-Xing) in benign prostatic hyperplasia model rat: toward an in-depth study for its bioactive components. J Pharm Biom Anal 85:218–230CrossRefGoogle Scholar
  68. Qin J, Li QZ, Gao XJ (2008) Effect of main components from semen Vaccariae on mouse mammary epithelial cell proliferation and expression of beta casein. Sci Agric Sin 41:2442–2447Google Scholar
  69. Riaz SK, Iqbal Y, Malik MF (2015) Diagnostic and therapeutic implications of the vascular endothelial growth factor family in cancer. Asian Pac J Cancer Prev 16:1677–1682CrossRefPubMedGoogle Scholar
  70. Sang SM, Lao AN, Wang HC et al (1998a) Study on the chemical constituents of semen Vaccariae. Nat Prod Res Dev 10:1–4Google Scholar
  71. Sang SM, Lao AN, Wang HC et al (1998b) A phenylpropanoid glycoside from Vaccaria segetalis. Phytochemistry 48:569–571CrossRefGoogle Scholar
  72. Sang SM, Lao AN, Wang HC et al (1998c) Triterpenoid saponins from Vaccaria segetalis. Nat Prod Sci 4:268–273Google Scholar
  73. Sang SM, Lao AN, Wang HC et al (1999) Triterpenoid saponins from Vaccaria segetalis. J Asian Nat Prod Res 1:199–205CrossRefPubMedGoogle Scholar
  74. Sang SM, Lao AN, Wang HC et al (2000a) Study on the chemical constituents of semen Vaccariae (II). Chin Trad HerbDrugs 31:169–171Google Scholar
  75. Sang SM, Lao AN, Chen ZL et al (2000b) Three new triterpenoid saponins from the seeds of Vaccaria segetalis. J Asian Nat Prod Res 2:187–193CrossRefPubMedGoogle Scholar
  76. Sang SM, Lao AN, Leng Y et al (2000c) Segetoside F, a new triterpenoid saponin with inhibition of luteal cell from the seeds of Vaccaria segetalis. Tetrahedron Lett 41:9205–9207CrossRefGoogle Scholar
  77. Sang SM, Mao SL, Lao AN et al (2000d) Study on the chemical constituents of semen Vaccariae III. Nat Prod Res Dev 12:12–15Google Scholar
  78. Sang SM, Xia ZH, Mao SL et al (2000e) Study on the flavone glycosides in semen Vaccariae. Chin J Chin Materia Med 25:29–30Google Scholar
  79. Sang SM, Zou ML, Lao AN et al (2000f) A new triterpenoid saponin from the seeds of Vaccaria segetalis. Chin Chem Lett 11:49–52Google Scholar
  80. Sang SM, Lao AN, Leng Y et al (2002) A new triterpenoid saponin with inhibition of luteal cell from the seeds of Vaccaria segetalis. J Asian Nat Prod Res 4:297–301CrossRefPubMedGoogle Scholar
  81. Schuermann A, Helker CSM, Herzog W (2014) Angiogenesis in zebrafish. Sem Cell Dev Biol 31:106CrossRefGoogle Scholar
  82. Shi FG (2010) 52 cases of chronic prostatitis treated by cowherb seed decoction. Inner Mong J Trad Chin Med 29:19–20Google Scholar
  83. Shi B, Shan A (2011) Dietary Semen Vaccariae enhances mammary development and lactation potential in rats. J Applied Anim Res 39:245–247CrossRefGoogle Scholar
  84. Shih C, Lin C, Lin W (2009) Ameliorative effects of Vaccaria segetalis extract on osteopenia in ovariectomized rats. J Nat Med 63:386–392CrossRefPubMedGoogle Scholar
  85. Shoemaker M, Hamilton B, Dairkee SH et al (2005) In vitro anticancer activity of twelve Chinese medicinal herbs. Phytother Res 19:649–651CrossRefPubMedGoogle Scholar
  86. Sonnet P, Petit L, Marty D et al (2001) First synthesis of segetalin A and analogous cyclohexapeptides. Tetrahedron Lett 42:1681–1683CrossRefGoogle Scholar
  87. Sonnet P, Da Nascimento S, Marty D (2003) First synthesis of segetalins B and G: two cyclopentapeptides with estrogen-like activity. Tetrahedron Lett 44:3293–3296CrossRefGoogle Scholar
  88. Tan NH, Jun Z (2006) Plant cyclopeptides. Chem Rev 106:840–895CrossRefPubMedGoogle Scholar
  89. Tong H, Gao X, Li Q et al (2011) Metabolic regulation of mammary gland epithelial cells of dairy cow by galactopoietic compound isolated from vaccariae segetalis. Agric Sci China 10:1106–1116CrossRefGoogle Scholar
  90. Tong H, Gao X, Sheng Z et al (2013) Galactopoietic activity of dibutyl phthalate isolated from Vaccaria segetalis. J Northeast Agric Univ (English Edition) 20:28–33CrossRefGoogle Scholar
  91. Vieira LMM, Kijjoa A (2005) Naturally occurring xanthones: recent developments. Curr Med Chem 12:2413–2446Google Scholar
  92. Wan Z, Tong H, Li Q et al (2011) Influence on cellular signal transduction pathway in dairy cow mammary gland epithelial cells by galactopoietic compound isolated from Vaccaria segetalis. Agric Sci China 10:619–630CrossRefGoogle Scholar
  93. Wang X, Dong H, Liu Y et al (2011) Application of high-speed counter-current chromatography for preparative separation of cyclic peptides from Vaccaria segetalis. J Chromatogr B 879:811–814CrossRefGoogle Scholar
  94. Wu Y, Deng MH, Chen XB (2010) Experimental study on prevention of Vaccaria segetalis from ovariectomized rat osteopeniais. J Sichuan Trad Chin Med 28:58–59Google Scholar
  95. Xia MX (2008) Separation and evaluation of the effective part of semen Vaccariae with inhibition efficacy of human microvascular endothelial cells. Dissertation, Jiangnan UniversityGoogle Scholar
  96. Xia ZH, Zou ML, Sang SM et al (2004) Segetoside L, a new triterpenoid saponin from Vaccaria segetalis. Chin Chem Lett 15:55–57Google Scholar
  97. Xie FS, Cai WW, Liu YL et al (2014) Vaccarin attenuates the human EAhy926 endothelial cell oxidative stress injury through inhibition of Notch signaling. Int J Mol Med 35:135–142PubMedGoogle Scholar
  98. Xu FY, Jin ZZ, Shen XZ (2005) Comparative study on arthritis of Vaccaria segetalis and Melandrium firmum. Henan J Trad Chin Med 25:30–32Google Scholar
  99. Yu P, Bai J, Liu J et al (2012) Study on promoting blood circulation to remove blood stasis of Radix Salviae Miltiorrhizae combined with semen Vaccariae. J Changchun Univ Trad Chin Med 28:965–966Google Scholar
  100. Yuan X, Fu L, Gu C et al (2014) Microwave-assisted extraction and antioxidant activity of vaccarin from the seeds of Vaccaria segetalis. Sep Purif Technol 133:91–98Google Scholar
  101. Yun YS, Morita H, Takeya K et al (1997a) Segetalins G and H structures and estrogen-like activity of cyclic pentapeptides from Vaccaria segetalis. J Nat Prod 60:216–218CrossRefPubMedGoogle Scholar
  102. Yun YS, Shimizu K, Morita H et al (1997b) Triterpenoid saponin from Vaccaria segetalis. Phytochemistry 47:143–144CrossRefGoogle Scholar
  103. Zhang WB (2012) Semen Vaccariae for external application combined with TDP irradiation for the treatment of herpes zoster clinical: observation of 42 cases. Chin Prim Health Care 26:99–100Google Scholar
  104. Zhang RP, Zhou C, Tan NH et al (1998) Study on cyclic peptide from semen Vaccariae. Acta Botanica Yunnanica 20:1–3Google Scholar
  105. Zhang TX, Niu CQ, Qin XM (2004) Effect of semen Vaccariae on contraction of isolated rabbit aortic rings and its mechanism. Pharmacol ClinChin Materia Med 20:28–29Google Scholar
  106. Zhang H, Wang K, Wu J et al (2011) A new flavonoid glycoside from Vaccaria hispanica. Nat Prod Commun 6:1599–1602PubMedGoogle Scholar
  107. Zhang XD, Liu HF, Diao TT (2012) Observation of the curative effect of compound semen Vaccariac tablets combined with artificial tears in the treatment of dry eye syndrome of menopausal women. Rec Adv Ophthalmol 32:661–664Google Scholar
  108. Zhang H, Jing Y, Wu G (2013) Inhibitory effects of crude polysaccharides from semen vaccariae on benign prostatic hyperplasia in mice. J Ethnopharmacol 145:667–669CrossRefPubMedGoogle Scholar
  109. Zhou QF, Liu CY, Xu HP (2014) Cowherb seed decoction combined with massage to increase milk: 56 cases. Chin Med Mod Dist Educ China 12:120Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Chinese Materia MedicaChina Academy of Chinese Medical ScienceBeijingChina
  2. 2.School of Chemical Biology and Pharmaceutical SciencesCapital Medical UniversityBeijingChina

Personalised recommendations