Skip to main content
Log in

Brassicaceae: a rich source of health improving phytochemicals

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Brassicaceae Burnett (syn. Cruciferae A.L. de Jussieu) include many important economic plants used as edible or ornamental which are commonly known as the “mustard” plant family due to the sharp, potent flavour of their sulfur metabolites, the glucosinolates. Brassicas also produce phenolics, tocopherols and peculiar seed oils. Current scientific knowledge attributes to species belonging to this botanical family several health benefits such as reduced risk of cancer. This review summarizes information on the phytochemical profile of Brassicaceae plants, with a special regard to glucosinolates and their derived degradation products, the isothiocyanates. In addition, their role as antioxidant and cancer protective metabolites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdull Razis AF, Noor NN (2013) Cruciferous vegetable: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev 14:1565–1570

    Article  PubMed  Google Scholar 

  • Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2010) Inatct glucosinolates modulate hepatic cytochrome P 450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 277:74–85

  • Abdull Razis AF, De Nicola GR, Pagnotta E, Iori R, Ioannides C (2012) 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch Toxicol 86:183–194

    Article  CAS  PubMed  Google Scholar 

  • Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2011) Up-regulation of cytochrome P450 and phase I enzyme systes in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 71:298–305

    Article  PubMed  Google Scholar 

  • Agerbirk N, Worwick S, Hansen PR, Olsen CE (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69:2937–2949

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72:610–623

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58:91–100

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, Ørgaard M, Nielsen JK (2003) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8:101–120

    Article  CAS  Google Scholar 

  • Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1043–1415

    Article  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellog EA (2006) Systematic and phylogeny of the Brassicaceae (Crucifera): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Ares AM, Nozal MJ, Bernal J (2013) Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 1313:78–95

    Article  CAS  PubMed  Google Scholar 

  • Argentieri MP, Avato P (2005) Profilo metabolico e bioattività di Brassicaceae. Inf Bot Ital 37:948–949

    Google Scholar 

  • Argentieri MP, Accogli R, Fanizzi FP, Avato P (2011) Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to Southern Italy (Salento). Planta Med 77:287–292

    Article  CAS  PubMed  Google Scholar 

  • Argentieri MP, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. Ind Crops Prod 36:65–69

    Article  CAS  Google Scholar 

  • Avato P, D’Addabbo T, Leonetti P, Argentieri MP (2013) Nematicidal potential of Brassicaceae. Phytochem Rev 12:791–802

    Article  CAS  Google Scholar 

  • Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. JAFC 60:11409–11420

    Article  CAS  Google Scholar 

  • Baenas N, Ferreres F, García-Viguera C, Moreno DA (2015) Radish sprouts—characterization and elicitation of novel varieties rich in anthocyanins. Food Res Int 69:305–312

    Article  CAS  Google Scholar 

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    Article  CAS  PubMed  Google Scholar 

  • Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valmigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. JAFC 53:2475–2482

    Article  CAS  Google Scholar 

  • Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007) Glucosinolate profiling of seeds and sprout of B. oleracea varieties used for food. Sci Hortic 114:234–242

    Article  CAS  Google Scholar 

  • Bennett RN, Rosa EAS, Mellon FA, Kroon PA (2006) Ontogenic profiling of glucosinolates, flavonoids and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket) and Bunia orientalis (Turkish rocket). JAFC 54:4005–4015

    Article  CAS  Google Scholar 

  • Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci 88:9543–9547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJ-A, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochemistry 72:538–556

    Article  PubMed  CAS  Google Scholar 

  • Branca F, Li G, Goyal S, Quiros CF (2002) Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry 59:717–724

    Article  CAS  PubMed  Google Scholar 

  • Brown AF, Yousef GG, Jeffery EH, Klein BP, Walling MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127:807–813

    CAS  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: biovailability in food and significance for human health. Phytochem Rev 7:213–229

    Article  CAS  Google Scholar 

  • Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

  • Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867

    Article  CAS  PubMed  Google Scholar 

  • Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758

    CAS  PubMed  Google Scholar 

  • D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxix and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199

    Article  PubMed  CAS  Google Scholar 

  • Daxenbichler ME, VanEtten CH, Williams PH (1979) Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. J Agric Food Chem 27:34–37

    Article  CAS  PubMed  Google Scholar 

  • Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638

    Article  CAS  Google Scholar 

  • Durazzo A, Azzini E, Lazzé MC, Raguzzini A, Pizzala R, Maiani G (2013) Italian wild rocket [Diplotaxis tenuifolia (L.) DC.]: influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture 3:285–298

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Cri Rev Food Sci Nutr 18:123–201

    Article  CAS  Google Scholar 

  • Fimognari C, Hrelia P (2007) Sulphoraphane as a promising molecule for fighting cancer. Mutat Res 636:90–104

    Article  CAS  Google Scholar 

  • Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 750:107–131

    Article  CAS  PubMed  Google Scholar 

  • Fréchard A, Fabre N, Pean C, Montaut S, Fauvel M, Rollin P, Fouraste I (2001) Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett 42:9015–9017

    Article  Google Scholar 

  • Goffmann FD, Becker HC (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125:189–191

    Article  Google Scholar 

  • Gómez-Campo C (2003) The genus Guenthera Andr. in Bess. (Brassicaceae, Brassiceae). An Jard Bot Madr 60:301–307

    Article  Google Scholar 

  • Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry, and dietary effects. J Hort Sci Biotechnol 73:1–18

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán CE, Calderón M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64:503–508

    Article  PubMed  CAS  Google Scholar 

  • Hanlon PR, Weber DM, Barnes DM (2007) Aqueous extract from Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line. JAFC 55:6439–6446

    Article  CAS  Google Scholar 

  • Hashem FA, Motawea H, El-Shabrawy AE, Shaker K, El-Sherbini S (2012) Myrosinase hydrolysates of Brassica oleraceae L. var italica reduce the risk of colon cancer. Phytother Res 26:743–747

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS, Carmella SG, Murphy SE (1999) Effects of watercress consumption onurinary metabolites of nicotine in smokers. Cancer Epidemiol Biomarkers Prev 8:907–913

    CAS  PubMed  Google Scholar 

  • Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:383–477

    Article  CAS  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiological evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ibrahim KE, Juvik JA (2009) Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 57:4636–4644

    Article  CAS  PubMed  Google Scholar 

  • Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case-control study of phyto-oestrogens and breast cancer. Lancet 350:990–994

    Article  CAS  PubMed  Google Scholar 

  • Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31–43

    Article  CAS  Google Scholar 

  • Johnson IT (2002a) Anticarcinogenic effects of diet-related apoptosis in the colorectal mucosa. Food Chem Toxicol 40:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Johnson IT (2002b) Glucosinolates in the human diet. Bioavailability and implications for health. Phytochem Rev 1:183–188

    Article  CAS  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF (2008) Plant systematics—a phylogenetic approach. Sinauer Ass., Inc, Massachussets

    Google Scholar 

  • Kabouw P, Biere A, van der Putten WH, van Dam NM (2010a) Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J Agric Food Chem 58:411–417

    Article  CAS  PubMed  Google Scholar 

  • Kabouw P, van der Putten WH, van Dam NM, Biere A (2010b) Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518

    Article  CAS  Google Scholar 

  • Kim S-J, Uddin MdR, Park SU (2013) Glucosinolate accumulation in three important radish (Raphanus sativus) cultivars. AJCS 7:1843–1847

    CAS  Google Scholar 

  • Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  • Kjaer A (1963) Isothiocyanates of natural origin. Pure Appl Chem 7:229–245

    Article  CAS  Google Scholar 

  • Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142

    Article  CAS  Google Scholar 

  • Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9

    Article  PubMed  Google Scholar 

  • Latté KP, Appel K-E, Lampen A (2011) Health benefits and possible risks of broccoli—an overview. Food Chem Toxicol 49:3287–3309

    Article  PubMed  CAS  Google Scholar 

  • Lin L-Z, Harnly JM (2010) Phenolic component profile of mustard greens, Yu Choy, and 15 other Brassica vegetables. JAFC 58:6850–6857

    Article  CAS  Google Scholar 

  • Lin L-Z, Sun J, Chen P, Harnly J (2011) UHPLC-PDA-ESI/HRMS/MS analysis of anthocyanins, flavonol glycosides and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Cass variety). JAFC 59:12059–12072

    Article  CAS  Google Scholar 

  • Linscheid M, Wendisch D, Strack D (1980) The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Z Naturforsch 35c:907–914

    CAS  Google Scholar 

  • Llorach R, Espian JC, Tomaas-Barberaan FA, Ferreres F (2003) Valorization of cauliflower (Brassica oleracea var. botrytis) by-products as a source of antioxidant phenolics. JAFC 51:2181–2187

    Article  CAS  Google Scholar 

  • Manchali S, Chidambara Murthy KN, Patil BS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4:94–106

    Article  CAS  Google Scholar 

  • Mandal S, Yadav S, Singh R, Begum G, Suneja P, Singh M (2002) Correlation studies on oil content and fatty acid profile of some cruciferous species. Genet Resour Crop Evol 49:551–556

    Article  Google Scholar 

  • Martinez-Sanchez A, Llorach R, Gil MI, Ferreres F (2007) Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). JAFC 55:1356–1363

    Article  CAS  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. JAFC 49:3106–3112

    Article  CAS  Google Scholar 

  • Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402

    Article  CAS  PubMed  Google Scholar 

  • Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    Article  CAS  Google Scholar 

  • Mithen R, Bennet R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074–2086

    Article  CAS  PubMed  Google Scholar 

  • Montaut S, Barillari J, Iori R, Rollin P (2010) Glucoraphasatin: chemistry, occurrence, and biological properties. Phytochemistry 71:6–12

    Article  CAS  PubMed  Google Scholar 

  • Moreno DA, Pérez-Balibrea Ferreres F, Gil-Izquierdo García-Viguera C (2010) Acylated anthocyanins in broccoli sprouts. Food Chem 123:358–363

    Article  CAS  Google Scholar 

  • Nabloussi A, Márquez-Lema A, Fernandez-Martínez Velasco L (2008) Novel seed oil types of Ethiopian mustard with high levels of polyunsaturated fatty acids. Ind Crop Prod 27:359–363

    Article  CAS  Google Scholar 

  • Nakamura Y, Iwahashi T, Tanaka A, Koutani J, Matsuo T, Okamoto S, Sato K, Ohtsuki K (2001) 4-(methylthio)-3-butenyl isothiocyanate, a principal antiomutagen in daikon (Raphanus sativus; Japanese white radish). JAFC 49:5755–5760

    Article  CAS  Google Scholar 

  • Nho CW, Jeffery E (2001) The synergistic upregualtion of phase II detoxification enzymes by glucosinolates breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol 174:146–152

    Article  CAS  PubMed  Google Scholar 

  • Nho CW, Jeffery E (2004) Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinole. Toxicol Appl Pharmacol 198:40–48

    Article  CAS  PubMed  Google Scholar 

  • Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545

    Article  CAS  PubMed  Google Scholar 

  • Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia FM, Pedulli GF, Valmigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. JAFC 56:875–883

    Article  CAS  Google Scholar 

  • Payne AC, Mazzer A, Clarkson GJJ, Taylor G (2013) Antioxidant assays-consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci Nutr 1:439–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Podsedek A (2005) Natural antioxidants and antioxidant capacity of Brassica vegetables. LWT Food Sci Technol 40:1–11

    Article  CAS  Google Scholar 

  • Reichelt M, Brown P, Schneider B, Oldham N, Stauber E, Tokuhisa J, Kliebenstein D, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidospis thaliana. Phytochemistry 59:663–671

    Article  CAS  PubMed  Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215

    CAS  Google Scholar 

  • Sang JP, Minchinton IR, Johnstone PK, Truscott RJW (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64:77–93

    Article  CAS  Google Scholar 

  • Schmidt R, Bancroft J (2011) Genetics and genomics of the Brassicaceae. Springer, Germany

    Book  Google Scholar 

  • Soengas P, Sotelo T, Velasco P, Cartea ME (2011) Antioxidants properties of Brassica vegetables. In: Teixeira da Silva J (ed) Functional Plant Science and Biotechnology, vol 5 (Special Iusse 2). Global Science Books, pp. 43–55

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  CAS  Google Scholar 

  • Talalay P, Zhang Y (1996) Chemo protection against cancer by isothiocyanate and glucosinolates. Biochem Soc Trans 24:806–810

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282

    Article  CAS  Google Scholar 

  • Valmigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50:222–237

    Article  CAS  Google Scholar 

  • Van Dam NM, Tytgat TOG, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8:171–186

    Article  CAS  Google Scholar 

  • VanEtten CH, Daxenbicher ME, Wolff IA (1969) Natural glucosinolates (thioglucosides) in food and feed. J Agric Food Chem 17:483–491

    Article  CAS  Google Scholar 

  • Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crops Prod 21:193–202

    Article  CAS  Google Scholar 

  • Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 47:231–238

    Article  Google Scholar 

  • Velasco P, Francisco M, Moreno DA, Ferreres F, Garcia-Viguera C, Cartea ME (2011) Phytochemical fingerprinting of vegetables Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem Anal 22:144–152

    Article  CAS  PubMed  Google Scholar 

  • Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265

    Article  PubMed  Google Scholar 

  • Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates—a review. Food Sci Technol 42:1561–1572

    CAS  Google Scholar 

  • Villantoro-Pulido M, Priego-Capote F, Alvarez-Sanchez B, Saha S, Philo M, Obregon-Cano S, De Haro-Bailon A, Font R, Del Rio-Celestino M (2013) An approach to the phytochemical profiling of rocket [Eruca sativa(Mill.) Thell]. J Sci Food Agric 93:3809–3819

    Article  CAS  Google Scholar 

  • Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135–142

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, Heidelberg, pp 33–65

    Chapter  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

  • Woodman OL, Meeker WF, Boujaoude M (2005) Vasorelaxant and antioxidant activity of flavonols and flavones: structure-activity relationships. J Cardiovasc Pharm 46:302–309

    Article  CAS  Google Scholar 

  • Xiao J, Suzuki M, Jiang X, Chen X, Yamamoto K, Ren F, Xu M (2008) Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. JAFC 56:2350–2356

    Article  CAS  Google Scholar 

  • Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57:1079–1089

    Article  CAS  Google Scholar 

  • Yoder SC, Lancaster SM, Hullar MSJ, Lampe JW (2015) Gut microbial metabolism of plant lignans: influence on human health. In: Tuohy K, Del Rio D (eds) Diet–microbe interactions in the gut: effects on human health and disease. Academic Press, New York, pp 103–117

    Google Scholar 

  • Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic phase 2 enzymes. Cancer Res 58:4632–4639

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li J, Tang L (2005) Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radic Biol Med 38:70–77

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Znidarcic D, Ban D, Sircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Avato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avato, P., Argentieri, M.P. Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev 14, 1019–1033 (2015). https://doi.org/10.1007/s11101-015-9414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9414-4

Keywords

Navigation