Phytochemistry Reviews

, Volume 14, Issue 6, pp 1019–1033 | Cite as

Brassicaceae: a rich source of health improving phytochemicals

  • P. Avato
  • M. P. Argentieri


Brassicaceae Burnett (syn. Cruciferae A.L. de Jussieu) include many important economic plants used as edible or ornamental which are commonly known as the “mustard” plant family due to the sharp, potent flavour of their sulfur metabolites, the glucosinolates. Brassicas also produce phenolics, tocopherols and peculiar seed oils. Current scientific knowledge attributes to species belonging to this botanical family several health benefits such as reduced risk of cancer. This review summarizes information on the phytochemical profile of Brassicaceae plants, with a special regard to glucosinolates and their derived degradation products, the isothiocyanates. In addition, their role as antioxidant and cancer protective metabolites is discussed.


Brassicaceae Glucosinolates Isothiocyanates Flavonoids Lipids Antioxidant Chemoprevention 


  1. Abdull Razis AF, Noor NN (2013) Cruciferous vegetable: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev 14:1565–1570PubMedCrossRefGoogle Scholar
  2. Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2010) Inatct glucosinolates modulate hepatic cytochrome P 450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 277:74–85Google Scholar
  3. Abdull Razis AF, De Nicola GR, Pagnotta E, Iori R, Ioannides C (2012) 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch Toxicol 86:183–194PubMedCrossRefGoogle Scholar
  4. Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2011) Up-regulation of cytochrome P450 and phase I enzyme systes in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 71:298–305PubMedCrossRefGoogle Scholar
  5. Agerbirk N, Worwick S, Hansen PR, Olsen CE (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69:2937–2949CrossRefGoogle Scholar
  6. Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72:610–623PubMedCrossRefGoogle Scholar
  7. Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45PubMedCrossRefGoogle Scholar
  8. Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58:91–100PubMedCrossRefGoogle Scholar
  9. Agerbirk N, Ørgaard M, Nielsen JK (2003) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80PubMedCrossRefGoogle Scholar
  10. Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8:101–120CrossRefGoogle Scholar
  11. Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1043–1415CrossRefGoogle Scholar
  12. Al-Shehbaz IA, Beilstein MA, Kellog EA (2006) Systematic and phylogeny of the Brassicaceae (Crucifera): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  13. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  14. Ares AM, Nozal MJ, Bernal J (2013) Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 1313:78–95PubMedCrossRefGoogle Scholar
  15. Argentieri MP, Avato P (2005) Profilo metabolico e bioattività di Brassicaceae. Inf Bot Ital 37:948–949Google Scholar
  16. Argentieri MP, Accogli R, Fanizzi FP, Avato P (2011) Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to Southern Italy (Salento). Planta Med 77:287–292PubMedCrossRefGoogle Scholar
  17. Argentieri MP, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. Ind Crops Prod 36:65–69CrossRefGoogle Scholar
  18. Avato P, D’Addabbo T, Leonetti P, Argentieri MP (2013) Nematicidal potential of Brassicaceae. Phytochem Rev 12:791–802CrossRefGoogle Scholar
  19. Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. JAFC 60:11409–11420CrossRefGoogle Scholar
  20. Baenas N, Ferreres F, García-Viguera C, Moreno DA (2015) Radish sprouts—characterization and elicitation of novel varieties rich in anthocyanins. Food Res Int 69:305–312CrossRefGoogle Scholar
  21. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160PubMedCrossRefGoogle Scholar
  22. Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valmigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. JAFC 53:2475–2482CrossRefGoogle Scholar
  23. Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861PubMedCentralPubMedCrossRefGoogle Scholar
  24. Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007) Glucosinolate profiling of seeds and sprout of B. oleracea varieties used for food. Sci Hortic 114:234–242CrossRefGoogle Scholar
  25. Bennett RN, Rosa EAS, Mellon FA, Kroon PA (2006) Ontogenic profiling of glucosinolates, flavonoids and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket) and Bunia orientalis (Turkish rocket). JAFC 54:4005–4015CrossRefGoogle Scholar
  26. Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci 88:9543–9547PubMedCentralPubMedCrossRefGoogle Scholar
  27. Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJ-A, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochemistry 72:538–556PubMedCrossRefGoogle Scholar
  28. Branca F, Li G, Goyal S, Quiros CF (2002) Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry 59:717–724PubMedCrossRefGoogle Scholar
  29. Brown AF, Yousef GG, Jeffery EH, Klein BP, Walling MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127:807–813Google Scholar
  30. Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: biovailability in food and significance for human health. Phytochem Rev 7:213–229CrossRefGoogle Scholar
  31. Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280Google Scholar
  32. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867PubMedCrossRefGoogle Scholar
  33. Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758PubMedGoogle Scholar
  34. D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxix and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199PubMedCrossRefGoogle Scholar
  35. Daxenbichler ME, VanEtten CH, Williams PH (1979) Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. J Agric Food Chem 27:34–37PubMedCrossRefGoogle Scholar
  36. Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638CrossRefGoogle Scholar
  37. Durazzo A, Azzini E, Lazzé MC, Raguzzini A, Pizzala R, Maiani G (2013) Italian wild rocket [Diplotaxis tenuifolia (L.) DC.]: influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture 3:285–298CrossRefGoogle Scholar
  38. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51PubMedCrossRefGoogle Scholar
  39. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Cri Rev Food Sci Nutr 18:123–201CrossRefGoogle Scholar
  40. Fimognari C, Hrelia P (2007) Sulphoraphane as a promising molecule for fighting cancer. Mutat Res 636:90–104CrossRefGoogle Scholar
  41. Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 750:107–131PubMedCrossRefGoogle Scholar
  42. Fréchard A, Fabre N, Pean C, Montaut S, Fauvel M, Rollin P, Fouraste I (2001) Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett 42:9015–9017CrossRefGoogle Scholar
  43. Goffmann FD, Becker HC (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125:189–191CrossRefGoogle Scholar
  44. Gómez-Campo C (2003) The genus Guenthera Andr. in Bess. (Brassicaceae, Brassiceae). An Jard Bot Madr 60:301–307CrossRefGoogle Scholar
  45. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502PubMedCrossRefGoogle Scholar
  46. Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry, and dietary effects. J Hort Sci Biotechnol 73:1–18CrossRefGoogle Scholar
  47. Guerrero-Beltrán CE, Calderón M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64:503–508PubMedCrossRefGoogle Scholar
  48. Hanlon PR, Weber DM, Barnes DM (2007) Aqueous extract from Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line. JAFC 55:6439–6446CrossRefGoogle Scholar
  49. Hashem FA, Motawea H, El-Shabrawy AE, Shaker K, El-Sherbini S (2012) Myrosinase hydrolysates of Brassica oleraceae L. var italica reduce the risk of colon cancer. Phytother Res 26:743–747PubMedCrossRefGoogle Scholar
  50. Hecht SS, Carmella SG, Murphy SE (1999) Effects of watercress consumption onurinary metabolites of nicotine in smokers. Cancer Epidemiol Biomarkers Prev 8:907–913PubMedGoogle Scholar
  51. Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:383–477CrossRefGoogle Scholar
  52. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiological evidence and mechanistic basis. Pharmacol Res 55:224–236PubMedCentralPubMedCrossRefGoogle Scholar
  53. Ibrahim KE, Juvik JA (2009) Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 57:4636–4644PubMedCrossRefGoogle Scholar
  54. Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case-control study of phyto-oestrogens and breast cancer. Lancet 350:990–994PubMedCrossRefGoogle Scholar
  55. Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31–43CrossRefGoogle Scholar
  56. Johnson IT (2002a) Anticarcinogenic effects of diet-related apoptosis in the colorectal mucosa. Food Chem Toxicol 40:1171–1178PubMedCrossRefGoogle Scholar
  57. Johnson IT (2002b) Glucosinolates in the human diet. Bioavailability and implications for health. Phytochem Rev 1:183–188CrossRefGoogle Scholar
  58. Judd WS, Campbell CS, Kellogg EA, Stevens PF (2008) Plant systematics—a phylogenetic approach. Sinauer Ass., Inc, MassachussetsGoogle Scholar
  59. Kabouw P, Biere A, van der Putten WH, van Dam NM (2010a) Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J Agric Food Chem 58:411–417PubMedCrossRefGoogle Scholar
  60. Kabouw P, van der Putten WH, van Dam NM, Biere A (2010b) Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518CrossRefGoogle Scholar
  61. Kim S-J, Uddin MdR, Park SU (2013) Glucosinolate accumulation in three important radish (Raphanus sativus) cultivars. AJCS 7:1843–1847Google Scholar
  62. Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86CrossRefGoogle Scholar
  63. Kjaer A (1963) Isothiocyanates of natural origin. Pure Appl Chem 7:229–245CrossRefGoogle Scholar
  64. Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142CrossRefGoogle Scholar
  65. Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9PubMedCrossRefGoogle Scholar
  66. Latté KP, Appel K-E, Lampen A (2011) Health benefits and possible risks of broccoli—an overview. Food Chem Toxicol 49:3287–3309PubMedCrossRefGoogle Scholar
  67. Lin L-Z, Harnly JM (2010) Phenolic component profile of mustard greens, Yu Choy, and 15 other Brassica vegetables. JAFC 58:6850–6857CrossRefGoogle Scholar
  68. Lin L-Z, Sun J, Chen P, Harnly J (2011) UHPLC-PDA-ESI/HRMS/MS analysis of anthocyanins, flavonol glycosides and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Cass variety). JAFC 59:12059–12072CrossRefGoogle Scholar
  69. Linscheid M, Wendisch D, Strack D (1980) The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Z Naturforsch 35c:907–914Google Scholar
  70. Llorach R, Espian JC, Tomaas-Barberaan FA, Ferreres F (2003) Valorization of cauliflower (Brassica oleracea var. botrytis) by-products as a source of antioxidant phenolics. JAFC 51:2181–2187CrossRefGoogle Scholar
  71. Manchali S, Chidambara Murthy KN, Patil BS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4:94–106CrossRefGoogle Scholar
  72. Mandal S, Yadav S, Singh R, Begum G, Suneja P, Singh M (2002) Correlation studies on oil content and fatty acid profile of some cruciferous species. Genet Resour Crop Evol 49:551–556CrossRefGoogle Scholar
  73. Martinez-Sanchez A, Llorach R, Gil MI, Ferreres F (2007) Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). JAFC 55:1356–1363CrossRefGoogle Scholar
  74. Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. JAFC 49:3106–3112CrossRefGoogle Scholar
  75. Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402PubMedCrossRefGoogle Scholar
  76. Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103CrossRefGoogle Scholar
  77. Mithen R, Bennet R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074–2086PubMedCrossRefGoogle Scholar
  78. Montaut S, Barillari J, Iori R, Rollin P (2010) Glucoraphasatin: chemistry, occurrence, and biological properties. Phytochemistry 71:6–12PubMedCrossRefGoogle Scholar
  79. Moreno DA, Pérez-Balibrea Ferreres F, Gil-Izquierdo García-Viguera C (2010) Acylated anthocyanins in broccoli sprouts. Food Chem 123:358–363CrossRefGoogle Scholar
  80. Nabloussi A, Márquez-Lema A, Fernandez-Martínez Velasco L (2008) Novel seed oil types of Ethiopian mustard with high levels of polyunsaturated fatty acids. Ind Crop Prod 27:359–363CrossRefGoogle Scholar
  81. Nakamura Y, Iwahashi T, Tanaka A, Koutani J, Matsuo T, Okamoto S, Sato K, Ohtsuki K (2001) 4-(methylthio)-3-butenyl isothiocyanate, a principal antiomutagen in daikon (Raphanus sativus; Japanese white radish). JAFC 49:5755–5760CrossRefGoogle Scholar
  82. Nho CW, Jeffery E (2001) The synergistic upregualtion of phase II detoxification enzymes by glucosinolates breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol 174:146–152PubMedCrossRefGoogle Scholar
  83. Nho CW, Jeffery E (2004) Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinole. Toxicol Appl Pharmacol 198:40–48PubMedCrossRefGoogle Scholar
  84. Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545PubMedCrossRefGoogle Scholar
  85. Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia FM, Pedulli GF, Valmigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. JAFC 56:875–883CrossRefGoogle Scholar
  86. Payne AC, Mazzer A, Clarkson GJJ, Taylor G (2013) Antioxidant assays-consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci Nutr 1:439–444PubMedCentralPubMedCrossRefGoogle Scholar
  87. Podsedek A (2005) Natural antioxidants and antioxidant capacity of Brassica vegetables. LWT Food Sci Technol 40:1–11CrossRefGoogle Scholar
  88. Reichelt M, Brown P, Schneider B, Oldham N, Stauber E, Tokuhisa J, Kliebenstein D, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidospis thaliana. Phytochemistry 59:663–671PubMedCrossRefGoogle Scholar
  89. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215Google Scholar
  90. Sang JP, Minchinton IR, Johnstone PK, Truscott RJW (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64:77–93CrossRefGoogle Scholar
  91. Schmidt R, Bancroft J (2011) Genetics and genomics of the Brassicaceae. Springer, GermanyCrossRefGoogle Scholar
  92. Soengas P, Sotelo T, Velasco P, Cartea ME (2011) Antioxidants properties of Brassica vegetables. In: Teixeira da Silva J (ed) Functional Plant Science and Biotechnology, vol 5 (Special Iusse 2). Global Science Books, pp. 43–55Google Scholar
  93. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290PubMedCrossRefGoogle Scholar
  94. Talalay P, Zhang Y (1996) Chemo protection against cancer by isothiocyanate and glucosinolates. Biochem Soc Trans 24:806–810PubMedCrossRefGoogle Scholar
  95. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282CrossRefGoogle Scholar
  96. Valmigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50:222–237CrossRefGoogle Scholar
  97. Van Dam NM, Tytgat TOG, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8:171–186CrossRefGoogle Scholar
  98. VanEtten CH, Daxenbicher ME, Wolff IA (1969) Natural glucosinolates (thioglucosides) in food and feed. J Agric Food Chem 17:483–491CrossRefGoogle Scholar
  99. Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crops Prod 21:193–202CrossRefGoogle Scholar
  100. Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 47:231–238CrossRefGoogle Scholar
  101. Velasco P, Francisco M, Moreno DA, Ferreres F, Garcia-Viguera C, Cartea ME (2011) Phytochemical fingerprinting of vegetables Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem Anal 22:144–152PubMedCrossRefGoogle Scholar
  102. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265PubMedCrossRefGoogle Scholar
  103. Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates—a review. Food Sci Technol 42:1561–1572Google Scholar
  104. Villantoro-Pulido M, Priego-Capote F, Alvarez-Sanchez B, Saha S, Philo M, Obregon-Cano S, De Haro-Bailon A, Font R, Del Rio-Celestino M (2013) An approach to the phytochemical profiling of rocket [Eruca sativa(Mill.) Thell]. J Sci Food Agric 93:3809–3819CrossRefGoogle Scholar
  105. Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135–142PubMedCrossRefGoogle Scholar
  106. Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, Heidelberg, pp 33–65CrossRefGoogle Scholar
  107. Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140CrossRefGoogle Scholar
  108. Woodman OL, Meeker WF, Boujaoude M (2005) Vasorelaxant and antioxidant activity of flavonols and flavones: structure-activity relationships. J Cardiovasc Pharm 46:302–309CrossRefGoogle Scholar
  109. Xiao J, Suzuki M, Jiang X, Chen X, Yamamoto K, Ren F, Xu M (2008) Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. JAFC 56:2350–2356CrossRefGoogle Scholar
  110. Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352PubMedCrossRefGoogle Scholar
  111. Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57:1079–1089CrossRefGoogle Scholar
  112. Yoder SC, Lancaster SM, Hullar MSJ, Lampe JW (2015) Gut microbial metabolism of plant lignans: influence on human health. In: Tuohy K, Del Rio D (eds) Diet–microbe interactions in the gut: effects on human health and disease. Academic Press, New York, pp 103–117Google Scholar
  113. Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic phase 2 enzymes. Cancer Res 58:4632–4639PubMedGoogle Scholar
  114. Zhang Y, Li J, Tang L (2005) Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radic Biol Med 38:70–77PubMedCrossRefGoogle Scholar
  115. Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536PubMedCentralPubMedCrossRefGoogle Scholar
  116. Znidarcic D, Ban D, Sircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1168PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Dipartimento di FarmaciaUniversitá di Bari Aldo MoroBariItaly

Personalised recommendations