Phytochemistry Reviews

, Volume 15, Issue 2, pp 251–277 | Cite as

Systematic evaluation of thymol derivatives possessing stereogenic or prostereogenic centers

  • Armando Talavera-Alemán
  • Gabriela Rodríguez-García
  • Yliana López
  • Hugo A. García-Gutiérrez
  • J. Martín Torres-Valencia
  • Rosa E. del Río
  • Carlos M. Cerda-García-Rojas
  • Pedro Joseph-Nathan
  • Mario A. Gómez-Hurtado


Thymol (2-isopropyl-5-methylphenol) is an aromatic molecule typically distributed in the genera Thymus and Origanum, which possesses both pharmacological and industrial relevance. This review highlights thymol derivatives with a stereogenic or prostereogenic center, which are distributed in 42 genera of the Asteraceae family whose chemotaxonomy is also outlined. In order to achieve a systematic analysis, which includes a structural examination and accounts for the vegetal sources, the reviewed thymol derivatives were grouped into mono-, di-, and multisubstituted compounds. According to the substitution on the aromatic ring, as well as on the isopropyl residue, and considering the functional groups, an evaluation of the 1H NMR signals, including multiplicities, was carried out. Optical activity data compilation of thymol derivatives revealed that 21 molecules show no optical activity in spite of having a stereogenic center, while two groups of 16 and 15 compounds exhibit, respectively, levorotatory and dextrorotatory optical activity. In addition, two thymol derivatives showed different optical behavior depending on the vegetal source, and only in a single case, the absolute configuration of a thymol derivative is known. Some 10 % of the known functionalized thymol derivatives have been evaluated biologically as antibacterial, anti-inflammatory, antiprotozoal, antioxidant, cytotoxic, piscicidal or allelopathic agents, being the last biological activity the most assayed one.


Thymol Asteraceae 8,9-Epoxythymol derivatives 8,9-Dehydrothymol derivatives 



We are indebted to a reviewer whose comments allowed us to improve this document.


  1. Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36PubMedCrossRefGoogle Scholar
  2. Ahmed AA, Jakupovic J, Eid F, Ali AA (1988) 11-Hydroxyjasionone, a new sesquiterpene type from Jasonia montana. Phytochemistry 27:3875–3877CrossRefGoogle Scholar
  3. Angeles-López G, Pérez-Vásquez A, Hernández-Luis F, Déciga-Campos M, Bye R, Linares E, Mata R (2010) Antinociceptive effect of extracts and compounds from Hofmeisteria schaffneri. J Ethnopharmacol 131:425–432PubMedCrossRefGoogle Scholar
  4. Aponte JC, Jin Z, Vaisberg AJ, Castillo D, Málaga E, Lewis WH, Sauvain M, Gilman RH, Hammond GB (2011) Cytotoxic and anti-infective phenolic compounds isolated from Mikania decora and Cremastosperma microcarpum. Planta Med 77:1597–1599PubMedCrossRefGoogle Scholar
  5. Bohlmann F, Gupta RK (1982) Ineupatorolide-like sesquiterpene lactones from Ditrichia viscosa. Phytochemistry 21:1443–1445CrossRefGoogle Scholar
  6. Bohlmann F, Jakupovic J (1979) Zwei neue Sesquiterpenlactone und eine Neuesesquiterpensäure aus Helenium puberulum. Phytochemistry 18:131–133CrossRefGoogle Scholar
  7. Bohlmann F, Lonitz M (1978) Neue Eudesman-Derivate und andere Sesquiterpene aus Verbesina-Arten. Chem Ber 111:254–263CrossRefGoogle Scholar
  8. Bohlmann F, Suwita A (1978) Neue Phloroglucin-derivate aus Leontonyx-Arten sowie weitere Verbindungen aus vertretern der Tribus Inuleae. Phytochemistry 17:1929–1934CrossRefGoogle Scholar
  9. Bohlmann F, Wolf-Rainer A (1979) Ein neuer Sesquiterpenalkohol und andere Inhaltsstoffe aus Doronicum pardalianches. Phytochemistry 18:668–671CrossRefGoogle Scholar
  10. Bohlmann F, Zdero C (1970) Neue Benzofuranderivate aus Doronicum austriacum Jacq. Tetrahedron Lett 41:3575–3576CrossRefGoogle Scholar
  11. Bohlmann F, Zdero C (1972) Neue Thymol-derivate aus Arnica amplexicaulis. Tetrahedron Lett 28:2827–2828CrossRefGoogle Scholar
  12. Bohlmann F, Zdero C (1976) Notiz über neue Inhaltsstoffe aus Wedelia forsteriana Endl. Chem Ber 109:791–792CrossRefGoogle Scholar
  13. Bohlmann F, Zdero C (1977a) Ein neues Thymol-derivat aus Callilepis laureola. Phytochemistry 16:1854–1855CrossRefGoogle Scholar
  14. Bohlmann F, Zdero C (1977b) Neue Norkauren-und Thymol-derivate aus Athrixia-Arten. Phytochemistry 16:1773–1776CrossRefGoogle Scholar
  15. Bohlmann F, Zdero C (1977c) Neue Sesquiterpenlactone und Thymol-derivate aus Inula-Arten. Phytochemistry 16:1243–1245CrossRefGoogle Scholar
  16. Bohlmann F, Zdero C (1981) Caryophyllene derivatives and a hydroxyisocomene from Pulicaria dysenterica. Phytochemistry 20:2529–2534CrossRefGoogle Scholar
  17. Bohlmann F, Zdero C (1982) Five tricyclic sesquiterpenes from Callilepis salicifolia. Phytochemistry 21:139–142CrossRefGoogle Scholar
  18. Bohlmann F, Niedballa U, Schulz J (1969a) Über einige Thymolderivate aus Gaillardia- und Helenium-Arten. Chem Ber 102:864–871CrossRefGoogle Scholar
  19. Bohlmann F, Schulz J, Bühmann U (1969b) Struktur und synthese eines Thymolderivates aus Helenium-Arten (1). Tetrahedron Lett 10:4703–4704CrossRefGoogle Scholar
  20. Bohlmann F, Zdero C, Grenz M (1976) Inhaltsstoffe einiger Gattungen der Tribus Helenieae und Senecioneae. Phytochemistry 15:1309–1310CrossRefGoogle Scholar
  21. Bohlmann F, Jakupovic J, Lonitz M (1977a) Über Inhaltsstoffe der Eupatorium-Gruppe. Chem Ber 110:301–314CrossRefGoogle Scholar
  22. Bohlmann F, Mahanta PK, Suwita A, Suwita A, Natu AA, Zdero C, Dorner W, Ehlers D, Grenz M (1977b) Neue Sesquiterpenlactone und andere Inhaltsstoffe aus vertretern der Eupatorium-Gruppe. Phytochemistry 16:1973–1981CrossRefGoogle Scholar
  23. Bohlmann F, Mahanta PK, Jakupovic J, Rastogi RC, Natu AA (1978a) New sesquiterpene lactones from Inula species. Phytochemistry 17:1165–1172CrossRefGoogle Scholar
  24. Bohlmann F, Zitzkowski P, Suwita A, Fiedler L (1978b) cis-Kolaveninsäure und weitere Inhaltsstoffe aus vertretern der Tribus Eupatorieae. Phytochemistry 17:2101–2105CrossRefGoogle Scholar
  25. Bohlmann F, Natu AA, Kerr K (1979) Thymol-derivate aus Neurolaena-Arten. Phytochemistry 18:489–490CrossRefGoogle Scholar
  26. Bohlmann F, Dhar AK, Ahmed M (1980a) Thymol derivatives from Doronicum hungariicum. Phytochemistry 19:1850–1851CrossRefGoogle Scholar
  27. Bohlmann F, Jakupovic J, King RM, Robinson H (1980b) Chromones and flavans from Marshallia obovata. Phytochemistry 19:1815–1820CrossRefGoogle Scholar
  28. Bohlmann F, Jakupovic J, Robinson H, King RM (1980c) Neue Diterpene aus Schkuhria-Arten. Phytochemistry 19:881–884CrossRefGoogle Scholar
  29. Bohlmann F, Jakupovic J, Schuster A (1981a) Further eudesmanolides and xanthanolides from Telekia speciosa. Phytochemistry 20:1891–1893CrossRefGoogle Scholar
  30. Bohlmann F, Kramp W, Gupta RK, King RM, Robinson H (1981b) Four guaianolides and other constituents from three Kaunia species. Phytochemistry 20:2375–2378CrossRefGoogle Scholar
  31. Bohlmann F, Zdero C, King RM, Robinson H (1981c) Heliangolides, and nerolidol and p-hydroxyacetophenone derivatives from Calea species. Phytochemistry 20:1643–1647CrossRefGoogle Scholar
  32. Bohlmann F, Adler A, Jakupovic J, King RM, Robinson H (1982a) A dimeric germacranolide and other sesquiterpene lactones from Mikania species. Phytochemistry 21:1349–1355CrossRefGoogle Scholar
  33. Bohlmann F, Gupta RK, King RM, Robinson H (1982b) Two furanoheliangolides from Calea angusta. Phytochemistry 21:2117–2118CrossRefGoogle Scholar
  34. Bohlmann F, Jakupovic J, King RM, Robinson H (1982c) New labdane derivatives from Madia sativa. Phytochemistry 21:1103–1107CrossRefGoogle Scholar
  35. Bohlmann F, Singh P, Jakupovic J, Robinson H, King RM (1982d) An epoxygermacranolide and further constituents from Mikania species. Phytochemistry 21:705–707CrossRefGoogle Scholar
  36. Bohlmann F, Grenz M, Jakupovic J, King RM, Robinson H (1983a) Four heliangolides and other sesquiterpenes from Brasilia sickii. Phytochemistry 22:1213–1218CrossRefGoogle Scholar
  37. Bohlmann F, Jakupovic J, Ahmed M, Schuster A (1983b) Sesquiterpene lactones and other constituents from Schistostephium species. Phytochemistry 22:1623–1636CrossRefGoogle Scholar
  38. Bohlmann F, Jakupovic J, Schuster A (1983c) 8-Hydroxypegolettiolide, a sesquiterpene lactone with a new carbon skeleton and further constituents from Pegolettia senegalensis. Phytochemistry 22:1637–1644CrossRefGoogle Scholar
  39. Bohlmann F, Zdero C, King RM, Robinson H (1983d) Thymol derivatives from Porophyllum riedelii. Phytochemistry 22:1035–1036CrossRefGoogle Scholar
  40. Bohlmann F, Hartono L, Zdero C, Jakupovic J (1985) Constituents of the genus Oxylobus. Phytochemistry 24:1111–1112CrossRefGoogle Scholar
  41. Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 77:130–136PubMedCrossRefGoogle Scholar
  42. Brookes BK, Candy HA, Pegel KH (1985) Two Thymol derivatives from Callilepsis laureola. Planta Med 51:32–34PubMedCrossRefGoogle Scholar
  43. Bustos-Brito C, Sánchez-Castellanos M, Esquivel B, Calderón JS, Calzada F, Yepez-Mulia L, Hernández-Barragán A, Joseph-Nathan P, Cuevas G, Quijano L (2014) Structure, absolute configuration, and antidiarrheal activity of a thymol derivative from Ageratina cylindrica. J Nat Prod 77:358–363PubMedCrossRefGoogle Scholar
  44. Chang RJ, Qin JJ, Cheng XR, Jin HZ, Zhang WD (2012) Chemical constituents from Inula helianthus-aquatica. Nat Prod Res Develop 24:291–297Google Scholar
  45. Chen JJ, Tsai YC, Hwang TL, Wang TC (2011) Thymol, benzofuranoid, and phenylpropanoid derivatives: anti-inflammatory constituents from Eupatorium cannabinum. J Nat Prod 74:1021–1027PubMedCrossRefGoogle Scholar
  46. Chen LC, Lee TH, Sung PJ, Shu CW, Lim YP, Cheng MJ, Kuo WL, Chen JJ (2014) New thymol derivatives and cytotoxic constituents from the root of Eupatorium cannabinum ssp. asiaticum. Chem Biodivers 11:1374–1380PubMedCrossRefGoogle Scholar
  47. Cheng XR, Ye J, Ren J, Zeng Q, Zhang F, Qin JJ, Shen YH, Zhang WD, Jin HZ (2012) Terpenoids from Inula sericophylla Franch. and their chemotaxonomic significance. Biochem Syst Ecol 42:75–78CrossRefGoogle Scholar
  48. Delle Monache G, Delle Monache F, Becerra J, Silva M, Menichini F (1984) Thymol derivatives from Eupatorium glechonophyllum. Phytochemistry 23:1947–1950CrossRefGoogle Scholar
  49. Didry N, Dubreuilb L, Pinkasa M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25–28PubMedCrossRefGoogle Scholar
  50. Fang N, Gage DA, Mabry TJ (1988) Sesquiterpene lactones and other constituents from Piptothrix areolare. Phytochemistry 27:203–205CrossRefGoogle Scholar
  51. García PG, García SE, Martínez GI, Scior TRF, Salvador JL, Martínez PMM, del Río RE (2011) Analgesic effect of leaf extract from Ageratina glabrata in the hot plate test. Braz J Pharmacogn 21:928–935CrossRefGoogle Scholar
  52. González AG, Bermejo Barrera J, Estévez Rosas F, Yanes Hernández AC, Espiñeira J, Joseph-Nathan P (1986a) Thymol derivatives from Schizogyne glaberrima. Phytochemistry 25:2889–2891CrossRefGoogle Scholar
  53. González AG, Bermejo Barrera J, Estévez Rosas F, Yanes Hernández AC, Joseph-Nathan P (1986b) Derivados fenólicos del género Schizogyne. Rev Latinoamer Quím 17:54–56Google Scholar
  54. González AG, Bermejo Barrera J, Estévez Rosas F, Castañeda Acosta J, Estévez Rosas F (1988) Anti-inflammatory activity of Schizogyne species. Fitoterapia 59:476–478Google Scholar
  55. González AG, Bermejo Barrera J, Yanes AC, Díaz JG, Rodríguez Pérez EM (1989) Chromenes and benzofurans from Ageratina glechonophylla. Phytochemistry 28:2520–2522CrossRefGoogle Scholar
  56. González AG, Bermejo Barrera J, Triana Méndez J, Eiroa Martínez JL, López Sánchez M (1993) Thymol derivatives from Vieraea laevigata. Phytochemistry 32:202–203CrossRefGoogle Scholar
  57. Guerrero C, Silva M, Maldonado E, Martínez M (1978) Ácido eupaglábrico un nuevo compuesto aislado de Eupathorium glabratum H.B.K. Rev Latinoamer Quim 9:71–75Google Scholar
  58. Heilmann J, Müller E, Merfort I (1999) Flavonoid glucosides and dicaffeoylquinic acids from flowerheads of Buphthalmum salicifolium. Phytochemistry 51:713–718CrossRefGoogle Scholar
  59. Hernández JD, Román LU, Rodríguez MJ, Espiñeira J, Joseph-Nathan P (1986) Areolal, a thymol from Piptothrix areolare. Phytochemistry 25:1743–1744CrossRefGoogle Scholar
  60. Herz W, Sosa VE (1988) Sesquiterpene lactones and other constituents of Arnica acaulis. Phytochemistry 27:155–159CrossRefGoogle Scholar
  61. Javan AJ, Javan MJ (2014) Electronic structure of some thymol derivatives correlated with the radical scavenging activity: theoretical study. Food Chem 165:451–459PubMedCrossRefGoogle Scholar
  62. Jiang HX, Li Y, Pan J, Gao K (2006) Terpenoids from Eupatorium fortunei Turcz. Helv Chim Acta 89:558–566CrossRefGoogle Scholar
  63. Joseph-Nathan P, Gordillo-Román B (2015) Vibrational circular dichroism absolute configuration determination of natural products. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 100. Springer International Publishing, Switzerland, p 311Google Scholar
  64. Joseph-Nathan P, Wesener JR, Günther H (1984) A two-dimensional NMR study of angelic and tiglic acid. Org Magn Reson 22:190–191CrossRefGoogle Scholar
  65. Kos O, Lindenmeyer MT, Tubaro A, Sosa S, Merfort I (2005) New sesquiterpene lactones from arnica tincture prepared from fresh flowerheads of Arnica montana. Planta Med 71:1044–1052PubMedCrossRefGoogle Scholar
  66. Liang H, Bao F, Dong X, Tan R, Zhang C, Lu Q, Cheng Y (2007) Antibacterial thymol derivatives isolated from Centipeda minima. Molecules 12:1606–1613PubMedCrossRefGoogle Scholar
  67. Maldonado E, Márquez CL, Ortega A (1992) A thymol derivative from Calea nelsonii. Phytochemistry 31:2527–2528CrossRefGoogle Scholar
  68. Marco JA, Sanz-Cervera JF, Manglano E (1993) Chlorinated thymol derivatives from Inula crithmoides. Phytochemistry 33:875–878CrossRefGoogle Scholar
  69. Martínez VM, Sánchez FA, Joseph-Nathan P (1987) Thymol derivatives from Calea nelsonii. Phytochemistry 26:2577–2579CrossRefGoogle Scholar
  70. Metwally MA, Dawidar AM (1985) A thymol derivative from Inula crithmoides. Phytochemistry 24:1377–1378CrossRefGoogle Scholar
  71. Miski M, Gage DA, Mabry TJ (1987) Terpenoids of Piptothrix sinaloae. Phytochemistry 26:2753–2757CrossRefGoogle Scholar
  72. Mossa JS, El-Feraly FS, Muhammad I, Zaw K, Mbwambo ZH, Pezzuto JM, Fong HHS (1997) Sesquiterpene lactones and thymol esters from Vicoa pentanema. J Nat Prod 60:550–555CrossRefGoogle Scholar
  73. Paolini J, Muselli A, Bernardini AF, Bighelli A, Casanova J, Costa J (2007) Thymol derivatives from essential oil of Doronicum corsicum L. Flavour Fragr J 22:479–487CrossRefGoogle Scholar
  74. Passreiter CM, Isman MB (1997) Antifeedant bioactivity of sesquiterpene lactones from Neurolaena lobata and their antagonism by γ-aminobutyric acid. Biochem Syst Ecol 25:371–377CrossRefGoogle Scholar
  75. Passreiter CM, Florack M, Willuhn G, Goerz G (1988) Allergic contact dermatitis caused by Asteraceae. Identification of an 8,9-epoxythymol-diester as the contact allergen of Arnica sachalinensis. Derm Beruf Umw 36:79–82Google Scholar
  76. Passreiter CM, Matthiesen U, Willuhn G (1998) 10-Acetoxy-9-chloro-8,9-dehydrothymol and further thymol derivatives from Arnica sachalinensis. Phytochemistry 49:777–781CrossRefGoogle Scholar
  77. Passreiter CM, Willuhn G, Weber H, Schleifer KJ (1999) A dimeric thymol derivative from Arnica sachalinensis. Tetrahedron 55:2997–3006CrossRefGoogle Scholar
  78. Pérez AL, Romo de Vivar A (1994) The monoterpene 9-hydroxythymol from Bahia schaffneri var. aristata. Phytochemistry 36:1081–1082CrossRefGoogle Scholar
  79. Pérez-Vásquez A, Linares E, Bye R, Cerda-García-Rojas CM, Mata R (2008) Phytotoxic activity and conformational analysis of thymol analogs from Hofmeisteria schaffneri. Phytochemistry 69:1339–1347PubMedCrossRefGoogle Scholar
  80. Polouse AJ, Croteau R (1978) Biosynthesis of aromatic monoterpenes: conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch Biochem Biophys 187:307–314CrossRefGoogle Scholar
  81. Radulović N, Blagojević P, Palić R, Zlatković (2010) Volatiles of Telekia speciosa (Schreb.) Baumg. (Asteraceae) from Serbia. J Essent Oil Res 22:250–254Google Scholar
  82. Romo de Vivar A, Cuevas LA, Guerrero C (1971) Eupaglabrina, un nuevo terpeno aislado de Eupatorium glabratum. Rev Latinoam Quim 2:32–34Google Scholar
  83. Rustaiyan A, Faramarzi S (1988) Sesquiterpene lactones from Serratula latifolia. Phytochemistry 27:479–481CrossRefGoogle Scholar
  84. Shen YC, Lo KL, Kuo YH, Khalil AT (2005) Cytotoxic sesquiterpene lactones from Eupatorium kiirunense, a coastal plant of Taiwan. J Nat Prod 68:745–750PubMedCrossRefGoogle Scholar
  85. Shi Y-P, Guo W, Yang C, Jia Z-J (1998) Two new aromatic derivatives from Carpesium lipskyi. Planta Med 64:671–672PubMedCrossRefGoogle Scholar
  86. Stojakowska A, Malarz J, Kisiel W (2004) Thymol derivatives from a root culture of Inula helenium. Z Naturforsch C 59:606–608PubMedCrossRefGoogle Scholar
  87. Stojakowska A, Kędzia B, Kisiel W (2005) Antimicrobial activity of 10-isobutyryloxy-8,9-epoxythymol isobutyrate. Fitoterapia 76:687–690PubMedCrossRefGoogle Scholar
  88. Stojakowska A, Michalska K, Malarz J (2006) Simultaneous quantification of eudesmanolides and thymol derivatives from tissues of Inula helenium and I. royleana by reversed-phase high-performance liquid chromatography. Phytochem Anal 17:157–161PubMedCrossRefGoogle Scholar
  89. Stojakowska A, Malarz J, Zubek S, Turnau K, Kisiel W (2010) Terpenoids and phenolics from Inula ensifolia. Biochem Syst Ecol 38:232–235CrossRefGoogle Scholar
  90. Stojakowska A, Malarz J, Kisiel W (2015) Quantitative analysis of sesquiterpene lactones and thymol derivatives in extracts from Telekia speciosa. Phytochem Lett 11:378–383CrossRefGoogle Scholar
  91. Su BN, Takaishi Y, Yabuuchi T, Kusumi T, Tori M, Takaoka S, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O (2001) Sesquiterpenes and monoterpenes from the bark of Inula macrophylla. J Nat Prod 64:466–471PubMedCrossRefGoogle Scholar
  92. Tamayo-Castillo G, Jakupovic J, Bohlmann F, Rojas A, Castro V, King RM (1988) Germacranolides and other constituents from Ageratina species. Phytochemistry 27:2893–2897CrossRefGoogle Scholar
  93. Tori M, Ohara Y, Nakashima K, Sono M (2001) Thymol derivatives from Eupatorium fortunei. J Nat Prod 64:1048–1051PubMedCrossRefGoogle Scholar
  94. Trang ND, Wanner MJ, Koomen GJ, Dung NX (1993) New acetophenone and thymol derivatives from Eupatorium stoechadosmum. Planta Med 59:480–481PubMedCrossRefGoogle Scholar
  95. Wajs-Bonikowska A, Stojakowska A, Kalemba D (2012) Chemical composition of essential oils from a multiple shoot culture of Telekia speciosa and different plant organs. Nat Prod Commun 7:625–628PubMedGoogle Scholar
  96. Wang C, Zhang X, Wei P, Cheng X, Ren J, Yan S, Zhang W, Jin H (2013) Chemical constituents from Inula wissmanniana and their anti-inflammatory activities. Arch Pharm Res 36:1516–1524PubMedCrossRefGoogle Scholar
  97. Wang Y, Li J, Wang H, Jin DQ, Chen H, Xu J, Ohizumi Y, Guo Y (2014) Thymol derivatives from Eupatorium fortunei and their inhibitory activities on LPS-induced NO production. Phytochem Lett 7:190–193CrossRefGoogle Scholar
  98. Weremczuk-Jeżyna I, Kisiel W, Wysokinska H (2006) Thymol derivatives from hairy roots of Arnica montana. Plant Cell Rep 25:993–996PubMedCrossRefGoogle Scholar
  99. Willuhn G, Junior I, Wendisch D (1986) Desmethoxy-encecalin und Thymolderivate aus Arnica sachalinensis. Planta Med 52:349–351CrossRefGoogle Scholar
  100. Wimmer P, Buysch HJ, Puppe L (1991) Process for the preparation of thymol. US patent 5,030,770, 9 July 1991Google Scholar
  101. Wu TS, Niwa M, Furukawa H, Kuoh CS (1985) Eupatriol, a new monoterpene from Eupatorium tashiroi Hayata. Chem Pharm Bull 33:4005–4006CrossRefGoogle Scholar
  102. Xu Q, Xie H, Xiao H, Wei X (2013) Phenolic constituents from the roots of Mikania micrantha and their allelopathic effects. J Agric Food Chem 61:7309–7314PubMedCrossRefGoogle Scholar
  103. Xu T, Gherib M, Bekhechi C, Atik-Bekkara F, Casabianca H, Tomi F, Casanova J, Bighelli A (2015) Thymyl esters derivatives and a new natural product modhephanone from Pulicaria mauritanica Coss. (Asteraceae) root oil. Flavour Fragr J 30:83–90CrossRefGoogle Scholar
  104. Yoshida T, Mori K, He G (1995) Inulavosin, a new thymol dimer with piscicidal activity from Inula nervosa. Heterocycles 41:1923–1926CrossRefGoogle Scholar
  105. Zdero C, Bohlmann F, Niemeyer HM (1990) Sesquiterpene lactones from Perityle emoryi. Phytochemistry 29:891–894CrossRefGoogle Scholar
  106. Zee OP, Kim DK, Lee KR (1998) Thymol derivatives from Carpesium divaricatum. Arch Pharm Res 21:618–620PubMedCrossRefGoogle Scholar
  107. Zhao J, Li Y, Liu Q, Gao K (2010) Antimicrobial activities of some thymol derivatives from the roots of Inula hupehensis. Food Chem 120:512–516CrossRefGoogle Scholar
  108. Zhou ZY, Liu WX, Pei G, Ren H, Wang J, Xu QL, Xie HH, Wan FH, Tan JW (2013) Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J Agric Food Chem 61:11792–11799PubMedCrossRefGoogle Scholar
  109. Zhu JX, Qin JJ, Wang HR, Zhu Y, Zhang WD, Jin HZ (2011) Monoterpenes and other chemical constituents from the aerial parts of Inula japonica. Chem Nat Comp 47:303–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Armando Talavera-Alemán
    • 1
  • Gabriela Rodríguez-García
    • 1
  • Yliana López
    • 1
  • Hugo A. García-Gutiérrez
    • 1
  • J. Martín Torres-Valencia
    • 2
  • Rosa E. del Río
    • 1
  • Carlos M. Cerda-García-Rojas
    • 3
  • Pedro Joseph-Nathan
    • 3
  • Mario A. Gómez-Hurtado
    • 1
  1. 1.Instituto de Investigaciones Químico BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Área Académica de QuímicaUniversidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  3. 3.Departamento de QuímicaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexicoMexico

Personalised recommendations