Phytochemistry Reviews

, Volume 14, Issue 5, pp 745–764 | Cite as

Non-terpenoid biotransformations by Mucor species

  • Eliane de Oliveira Silva
  • Niege Araçari Jacometti Cardoso Furtado
  • Josefina Aleu
  • Isidro González Collado


Biotransformation is an important tool for the structural modification of organic compounds, especially natural products with complex structures, which are difficult to achieve using ordinary methods. It is also useful as a model for mammalian metabolism due to similarities between mammalian and microbial enzyme systems. The development of novel biocatalytic methods is a continuously growing area of chemistry, microbiology, and genetic engineering, and novel microorganisms and/or their enzymes are being screened intensively. This review covers the transformation of non-terpenoid compounds such as steroids, coumarins, flavonoids, drugs, pesticides and others by Mucor spp. up to the end of 2012.


Biotransformation Mucor sp. Non-terpenoid 


  1. Adachi T, Sasaki J, Omura S (1989) Hydroxylation and N-demethylation of clarithromycin (6-O-methylerythromycin A) by Mucor circinelloides. J Antibiot 42:1433–1437CrossRefPubMedGoogle Scholar
  2. Alexandre V, Ladril S, Maurs M et al (2004) Microbial models of animal drug metabolism Part 5. Microbial preparation of human hydroxylated metabolites of irbesartan. J Mol Catal B-Enzym 29:173–179CrossRefGoogle Scholar
  3. Al-Footy KO (2008a) Microbiological hydroxylation of some epoxy steroids by the fungus Mucor plumbeus. J Chem Res 6:314–317CrossRefGoogle Scholar
  4. Al-Footy KO (2008b) Biotransformation of some ring A and B epoxy steroids by the fungus Mucor plumbeus. Orient J Chem 24:1–6Google Scholar
  5. Al-Fouti K, Hanson JR (2002) The biotransformation of 4-oxa- and 6-oxa-5α-androstan-17-one by Mucor plumbeus. J Chem Res (S) 11:570–571CrossRefGoogle Scholar
  6. Anderson JPE, Lichtenstein EP, Whittingham WFJ (1970) Effect of Mucor alternans on the persistence of DDT and Dieldrin in culture and in soil. J Econ Entomol 63:1595–1599CrossRefPubMedGoogle Scholar
  7. Asha S, Vidyavathi M (2009) Cunninghamella—a microbial model for drug metabolism studies—a review. Biotechnol Adv 27:16–29CrossRefPubMedGoogle Scholar
  8. Bhatti HN, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77:1267–1290CrossRefPubMedGoogle Scholar
  9. Capek A, Tadra M, Kakac B et al (1962) Microbiological transformation of derivatives of hexa-hydronaphthoic acid. Folia Microbiol 7:253–254CrossRefGoogle Scholar
  10. Carvalho MB, Martins I, Leitão MC et al (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36:1249–1256CrossRefPubMedGoogle Scholar
  11. Cerniglia CE, Hebert RL, Szaniszlo PJ et al (1978) Fungal transformation of naphthalene. Arch Microbiol 117:135–143CrossRefPubMedGoogle Scholar
  12. Chen Q, Liu J, Zhang H et al (2009) The betulinic acid production from betulin through biotransformation by fungi. Enzym Microb Technol 45:175–180CrossRefGoogle Scholar
  13. Decolin M, Walther B, Villoutreix J et al (1985) Experimental model for in vitro hydroxylation; micromycetes Mucor hiemalis compared to liver microsomal fraction. Biochem Pharmocol 34:401–402Google Scholar
  14. Dodson RM, Tweit RC (1960) Oxygenated derivatives of 4,6-pregnadiene-3,20-dione. US 2924611 19600209Google Scholar
  15. Duan M, Huang H, Li X et al (2006) Assignments of 1H and 13C NMR spectral data for ondansetron and its two novel metabolites, 1-hydroxy-ondansetron diastereoisomers. Magn Reson Chem 44:972–975CrossRefPubMedGoogle Scholar
  16. El Minofy HA, Hamdi AA, Abd-Elsalam IS (2000) Biotransformation of progesterone to 11α-hydroxyprogesterone using the immobilized spores and mycelium of Mucor racemosus NRRL 3639. Egypt J Microbiol 34:153–166Google Scholar
  17. Eppstein SH, Meister PD, Peterson DH et al (1958) Microbiological transformations of steroids. XV. Tertiary hydroxylation of steroids by fungi of the order Mucorales. J Am Chem Soc 80:3382–3389CrossRefGoogle Scholar
  18. Eroshin VK (1962) Capacity of mucorales fungi to oxidize steroids. Microbiologia 31:608–615Google Scholar
  19. Faramarzi MA, Badiee M, Tabatabaei MY et al (2008) Formation of hydroxysteroid derivatives from androst-4-ene-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Catal B-Enzym 50:7–12CrossRefGoogle Scholar
  20. Ge W, Wang S, Shan L et al (2008) Transformation of 3β-hydroxy-5-en-steroids by Mucor racemosus. J Mol Catal B-Enzym 55:37–42CrossRefGoogle Scholar
  21. Hafsah Z, Tahara S, Junya M (1984) Microbial metabolism of chlorinated nitrobenzenes. II. Fungal metabolism of dichloronitrobenzenes. Nippon Noyaku Gakkaishi 9:117–123Google Scholar
  22. Hafsah Z, Tahara S, Junya M (1987a) Microbial metabolism of chlorinated nitrobenzenes. IV. Metabolic pathways of 2,4-dichloro-1-nitrobenzene in Mucor javanicus. Nippon Noyaku Gakkaishi 12:617–625Google Scholar
  23. Hafsah Z, Tahara S, Junya M (1987b) Microbial metabolism of chlorinated nitrobenzenes. III. A glutathione conjugate of 2,4-dichloro-1-nitrobenzene: its detection as a metabolic intermediate and further metabolism in Mucor javanicus. Nippon Noyaku Gakkaishi 12:609–616Google Scholar
  24. Hamdi AA, Minofy HAE, Abd-Elsalam IS (2000) Microbiological transformation of progesterone to 11α-hydroxy progesterone using Mucor racemosus NRRL 3639. Egypt J Microbiol 34:167–179Google Scholar
  25. Hanson JR, Hitchcock PB, Kiran I (2003) The effect of a 4-formyl and hydroxymethyl substituent on steroid biotransformations by Mucor plumbeus. J Chem Res (S) 3:136–137CrossRefGoogle Scholar
  26. He X, Tang J, Qiao A et al (2006) Cytotoxic biotransformed products from cinobufagin by Mucor spinosus and Aspergillus niger. Steroids 71:392–402CrossRefPubMedGoogle Scholar
  27. Herath W, Khan IA (2011) Microbial metabolism. Part 13. Metabolites of hesperetin. Bioorg Med Chem Lett 21:5784–5786CrossRefPubMedGoogle Scholar
  28. Herath W, Mikell JR, Khan IA (2009) Microbial metabolism. Part 10: metabolites of 7,8-dimethoxyflavone and 5-methoxyflavone. Nat Prod Res 23:1231–1239CrossRefPubMedGoogle Scholar
  29. Herber R, Villoutreix J, Pierfitte M (1969) 2-Hydroxybiphenyl metabolism in a strain of Mucor. C R Seances Soc Biol Fil 163:1657–1661Google Scholar
  30. Hilário VC, Carrão DB, Barth T et al (2012) Assessment of the stereoselective fungal biotransformation of albendazole and its analysis by HPLC in polar organic mode. J Pharm Biomed 61:100–107CrossRefGoogle Scholar
  31. Hong SK, Anestis DK, Ball JG et al (2002) In vitro nephrotoxicity induced by chloronitrobenzenes in renal cortical slices from Fischer 344 rats. Toxicol Lett 129:133–141CrossRefPubMedGoogle Scholar
  32. Hu S, Genain G, Azerad R (1995) Microbial transformation of steroids: contribution to 14α-hydroxylations. Steroids 60:337–352CrossRefPubMedGoogle Scholar
  33. Ibrahim A, Khalifa SI, Khafagi I et al (2008) Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chem Pharm Bull 56:1253–1258CrossRefPubMedGoogle Scholar
  34. Ibrahim AK, Radwan MM, Ahmed SA et al (2010) Microbial metabolism of cannflavin A and B isolated from Cannabis sativa. Phytochemistry 71:1014–1019CrossRefPubMedGoogle Scholar
  35. Jesus LI, Albuquerque NCP, Borges KB et al (2011) Enantioselective fungal biotransformation of risperidone in liquid culture medium by capillary electrophoresis and hollow fiber liquid-phase microextraction. Electrophoresis 32:2765–2775CrossRefPubMedGoogle Scholar
  36. Juengst FW, Alexander M (1976) Conversion of l, l, l-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to water-soluble products by microorganisms. J Agric Food Chem 24:111–115CrossRefPubMedGoogle Scholar
  37. Khattab AA, Abd-El Salam IS (2012) Construction of new mutants of M. racemosus to improve progesterone biotransformation. Aust J Basic Appl Sci 6:356–363Google Scholar
  38. Kim HJ, Kim S, Kang BY et al (2008) Microbial metabolites of 8-prenylnaringenin, an estrogenic prenylflavanone. Arch Pharm Res 31:1241–1246CrossRefPubMedGoogle Scholar
  39. Krishnan R, Madyastha KM, Seshadri TP et al (1991) The identification of 14α, l7β-dihydroxyandrost-4-ene-3-one monohydrate and 14α,17β-dihydroxyandrosta-1,4-dien-3-one monohydrate, metabolites of androstenedione in Mucor piriformis. Steroids 56:440–445CrossRefPubMedGoogle Scholar
  40. Kurogochi S, Tahara S, Mizutani J (1974) Fungal metabolites of sorbic acid. Agric Biol Chem 38:893–895CrossRefGoogle Scholar
  41. Kurogochi S, Tahara S, Mizutani J (1975) Fungal reduction of C6 α, β-unsaturated carboxylic acids. Agric Biol Chem 39:825–831CrossRefGoogle Scholar
  42. Lacroix I, Biton J, Azerad R (1999) Microbial models of drug metabolism: microbial transformations of Trimegestone® (RU27987), a 3-Keto-Δ4,9(10)-19-norsteroid. Drug Bioorg Med Chem 7:2329–2341CrossRefPubMedGoogle Scholar
  43. Lamm AS, Chen ARM, Reynolds WF et al (2007) Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 72:713–722CrossRefPubMedGoogle Scholar
  44. Li H-P, Yu P, Zhang H-J et al (2008) Synthesis of 5-androstene-3β,7α,17β-triol and 5-androstene-3β,7β,17β-triol. Chin J Chem 26:1666–1668CrossRefGoogle Scholar
  45. Lièvremont D, Seigle-Murandi F, Benoit-Guyod J et al (1996) Biotransformation and biosorption of pentachloronitrobenzene by fungal mycelia. Mycol Res 100:948–954Google Scholar
  46. Lilly MD (1994) Advances in biotransformation processes. Chem Eng Sci 49:151–159CrossRefGoogle Scholar
  47. Lv X, Xin X, Deng S et al (2012) Biotransformation of osthole by Mucor spinosus. Process Biochem 47:2542–2546CrossRefGoogle Scholar
  48. Ma L, Liu X, Liang J et al (2011) Biotransformations of cinnamaldehyde, cinnamic acid and acetophenone with Mucor. World J Microbiol Biotechnol 27:2133–2137CrossRefGoogle Scholar
  49. Madyastha KM (1994) Preparatively useful transformations of steroids and morphine alkaloids by Mucor piriformis. In: Proceedings-Indian Academy of Sciences, Chemical Sciences, pp 1203–1212Google Scholar
  50. Madyastha KM, Srivatsan J (1987) Novel transformations of progesterone by a Mucor sp. Can J Microbiol 33:361–365CrossRefGoogle Scholar
  51. Madyastha KM, Reddy GVB, Nagarajappa H et al (2000) N-Demethylation and N-oxidation of thebaine, an isoquinoline alkaloid by Mucor piriformis. Indian J Chem Sect B 39B:377–381Google Scholar
  52. Mahato SB, Banerjee S (1985) Steroid transformations by microorganisms II. Phytochemistry 24:1403–1421CrossRefGoogle Scholar
  53. Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345CrossRefPubMedGoogle Scholar
  54. Mahato SB, Majumdar I (1993) Current trends in microbial steroid biotransformation. Phytochemistry 34:883–898CrossRefPubMedGoogle Scholar
  55. Mahato SB, Mukherjee A (1984) Steroid transformations by microorganisms. Phytochemistry 23:2131–2154CrossRefGoogle Scholar
  56. Marshall VP, Mcgovren JP, Richard FA et al (1978) Microbial metabolism of anthracycline antibiotics daunomycin and adriamycin. J Antibiot 31:336–342CrossRefPubMedGoogle Scholar
  57. Mikell JR, Khan IA (2012) Bioconversion of 7-hydroxyflavanone: isolation, characterization and bioactivity evaluation of twenty-one phase I and phase II microbial metabolites. Chem Pharm Bull 60:1139–1145CrossRefPubMedGoogle Scholar
  58. Mikell JR, Herath W, Khan IA (2011) Microbial metabolism. Part 12. Isolation, characterization and bioactivity evaluation of eighteen microbial metabolites of 4′-hydroxyflavanone. Chem Pharm Bull 59:692–697CrossRefPubMedGoogle Scholar
  59. Moussa C, Houziaux P, Danree B et al (1997) Microbial models of mammalian metabolism. Fungal metabolism of phenolic and nonphenolic p-cymene-reported drugs and prodrugs. I. Metabolites of thymoxamine. Drug Metab Dispos 25:301–310PubMedGoogle Scholar
  60. Murray HC, Peterson DH (1952) Oxidation of steroids by Mucorales fungi. US Patent 2,602,769Google Scholar
  61. Murray HC, Peterson DH (1956) Steroids. US Patent 2,735,800Google Scholar
  62. Murray HC, Peterson DH (1957) 8-Hydroxy-11-deoxycorticosterones. US Patent 2,800,490Google Scholar
  63. Ouazzani J, Servy C, Bloy C et al (1995) Fungal metabolite of naftazone inhibits nitrite production by activated murine macrophages. Bioorg Med Chem Lett 5:1825–1828CrossRefGoogle Scholar
  64. Parshikov IA, Freeman JP, Lay JO et al (1999) Regioselective transformation of ciprofoxacin to N-acetylciprofoxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135CrossRefPubMedGoogle Scholar
  65. Parshikov IA, Freeman JP, Lay JO et al (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microb 66:2664–2667CrossRefGoogle Scholar
  66. Parshikov IA, Freeman JP, Lay JO et al (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biot 26:140–144CrossRefGoogle Scholar
  67. Peart PC, Chen ARM, Reynolds WF et al (2012) Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids 77:85–90CrossRefPubMedGoogle Scholar
  68. Quintana MG, Dalton H (1999) Biotransformation of aromatic compounds by immobilized bacterial strains in barium alginate beads. Enzym Microb Technol 24:232–236CrossRefGoogle Scholar
  69. Rosazza JP, Smith RV (1979) Microbial models for drug metabolism. Adv Appl Microbiol 25:169–208CrossRefPubMedGoogle Scholar
  70. Rosche B, Sandford V, Breuer M et al (2001) Biotransformation of benzaldehyde into (R)-phenylacetylcarbinol by filamentous fungi or their extracts. Appl Microbiol Biotechnol 57:309–315CrossRefPubMedGoogle Scholar
  71. Sasaki J, Mizoue K, Morimoto S et al (1988) Microbial transformation of 6-O-methylerythromycin derivatives. J Antibiot 41:908–915CrossRefPubMedGoogle Scholar
  72. Seigle-Murandi F, Guiraud P, Steiman R et al (1992) Phenoloxidase production and vanillic acid metabolism by Zygomycetes. Microbiologica 15:157–165PubMedGoogle Scholar
  73. Seo J, Jeon J, Kim S et al (2007) Fungal biodegradation of carbofuran and carbofuran phenol by the fungus Mucor ramannianus: identification of metabolites. Water Sci Technol 55:163–167CrossRefPubMedGoogle Scholar
  74. Shan L, Liu H, Huang K et al (2009) Synthesis of 3β,7α,11α-trihydroxy-pregn-21-benzylidene-5-en-20-one derivatives and their cytotoxic activities. Bioorg Med Chem Lett 19:6637–6639CrossRefPubMedGoogle Scholar
  75. Singh K, Sehgal SN, Vezina C (1967) Transformation of steroids by Mucor griseocyanus. Can J Microbiol 13:1271–1282CrossRefPubMedGoogle Scholar
  76. Smith RV, Rosazza JP (1975) Microbial models of mammalian metabolism. J Pharm Sci 64:1737–1758CrossRefPubMedGoogle Scholar
  77. Smith RV, Rosazza JP (1983) Microbial models of mammalian metabolism. J Nat Prod 46:79–91CrossRefPubMedGoogle Scholar
  78. Smith KE, Latif S, Kirk DN et al (1989) Microbial transformations of steroids-IV. 6,7-dehydrogenation; a new class of fungal steroid transformation product. J Steroid Biochem 33:271–276CrossRefPubMedGoogle Scholar
  79. Srisailam K, Veeresham C (2010) Biotransformation of celecoxib using microbial cultures. Appl Biochem Biotechnol 160:2075–2089CrossRefPubMedGoogle Scholar
  80. Szewczyk R, Dlugonski J (2009) Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus. Int Biodeterior Biodegrad 63:123–129CrossRefGoogle Scholar
  81. Tahara S, Suzuki Y, Mizutani J (1977) Fungal metabolism of trans-2-octenoic acid. Agric Biol Chem 41:1643–1650CrossRefGoogle Scholar
  82. Tahara S, Hafsah Z, Ono A et al (1981) Metabolites of 2,4-dichloro-l-nitrobenzene by Mucor javanicus. Agric Biol Chem 45:2253–2258CrossRefGoogle Scholar
  83. Torshabi M, Badiee M, Faramarzi MA et al (2011) Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chem Nat Compd 47:59–63CrossRefGoogle Scholar
  84. Wang H, Ni J, Cao X et al (2010) Study on biotransformation of natural coumarin by marine fungus Mucor sp. MNP801 and volatile composition. Zhongguo Haiyang Yaowu 29:6–9Google Scholar
  85. Xu J, Yang L, Zhao S et al (2011) Microbial glycosylation of cardamonin by Mucor spinosus. Yaoxue Xuebao 46:733–737Google Scholar
  86. Ye M, Qu G, Guo H et al (2004a) Specific 12β-hydroxylation of cinobufagin by filamentous fungi. Appl Environ Microbiol 70:3521–3527PubMedCentralCrossRefPubMedGoogle Scholar
  87. Ye M, Qu G, Guo H et al (2004b) Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure–activity relationships. J Steroid Biochem Mol Biol 91:87–98CrossRefPubMedGoogle Scholar
  88. Ye M, Han J, Tu G et al (2005a) Microbial hydroxylation of bufalin by Cunninghamella blakesleana and Mucor spinosus. J Nat Prod 68:626–628CrossRefPubMedGoogle Scholar
  89. Ye M, Han J, An D et al (2005b) New cytotoxic bufadienolides from the biotransformation of resibufogenin by Mucor polymorphosporus. Tetrahedron 61:8947–8955CrossRefGoogle Scholar
  90. Zhan J, Guo H, Dai J et al (2001) Biotransformation of gastrodin by Mucor spinosus. J Chin Pharm Sci 10:187–189Google Scholar
  91. Zhan J, Zhang Y, Liu W et al (2003) Directional modifications of resibufogenin by Mucor subtilissimus and Pseudomonas aeruginosa. Biocatal Biotransform 21:141–143CrossRefGoogle Scholar
  92. Zhan J, Guo H, Ning L et al (2006) Efficient preparation of derivatives of resibufogenin using microbial catalytic technique. Planta Med 72:346–350CrossRefPubMedGoogle Scholar
  93. Zhang W, Zhan J, Chen Y et al (2003) Biotransformation of three free anthraquinones by Mucor spinosus. Zhongguo Tianran Yaowu 1:219–223Google Scholar
  94. Zhang W, Ye M, Qu G et al (2005) Microbial hydroxylation of cinobufagin by Mucor spinosus. J Asian Nat Prod Res 7:225–229CrossRefPubMedGoogle Scholar
  95. Zhang H, He G, Liu J et al (2008) Production of gastrodin through biotransformation of p-2-hydroxybenzyl alcohol by cultured cells of Armillaria luteo-virens Sacc. Enzym Microb Technol 43:25–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eliane de Oliveira Silva
    • 1
  • Niege Araçari Jacometti Cardoso Furtado
    • 1
  • Josefina Aleu
    • 2
  • Isidro González Collado
    • 2
  1. 1.Departamento de Ciências Farmacêuticas, Faculdade de Ciências FarmacêuticasUniversidade de São PauloRibeirão PrêtoBrazil
  2. 2.Departamento de Química Orgánica, Facultad de CienciasUniversidad de CádizPuerto RealSpain

Personalised recommendations