Phytochemistry Reviews

, Volume 14, Issue 5, pp 713–725 | Cite as

Stress alleviating plant-derived ‘green odors’: behavioral, neurochemical and neuroendocrine perspectives in laboratory animals

  • Jereme G. Spiers
  • Hsiao-Jou Cortina Chen
  • Nickolas A. Lavidis


Exposure to physical or psychological stimuli perceived to be threatening activates the hypothalamic–pituitary–adrenal (HPA) axis and the sympathetic nervous system (SNS) resulting in a classical stress response. Prolonged activation of the HPA and SNS is associated with many adverse physiological changes, most notable the development of anxiety and depression. Recently, a number of plant-derived aliphatic alcohols and aldehydes, termed ‘green odors,’ have demonstrated stress-alleviating properties. This novel method of stress-alleviation has been shown using a number of different animal and stress models utilizing numerous experimental techniques. The object of this review is to present a balanced and critical overview of the present literature on the mammalian effects of exposure to these odors. These findings will be discussed in terms of ongoing trends in the field and possible experimental outcomes will be suggested.


Anxiety Depression Green odor Olfaction Stress 



Molecular receptive range


Olfactory bulb


Olfactory receptors


Olfactory receptor neurons




Conflict of interest

All authors declare no competing financial interests.


  1. Akutsu H, Kikusui T, Takeuchi Y, Sano K, Hatanaka A, Mori Y (2002) Alleviating effects of plant-derived stress-induced hyperthermia fragrances on in rats. Physiol Behav 75:355–360PubMedCrossRefGoogle Scholar
  2. Aou SJ, Mizuno M, Matsunaga Y, Kubo K, Li XL, Hatanaka A (2005) Green odor reduces pain sensation and fatigue-like responses without affecting sensorimotor function. Chem Senses 30:i262–i263PubMedCrossRefGoogle Scholar
  3. Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255PubMedCrossRefGoogle Scholar
  4. Barlow JS, Remond A (1981) Eye movement artifact nulling in EEGs by multichannel on-line EOG subtraction. Electroencephalogr Clin Neurophysiol 52:418–423PubMedCrossRefGoogle Scholar
  5. Barton D (1999) Comprehensive natural products chemistry, 1st edn. Elsevier, New YorkGoogle Scholar
  6. Bashore TR, van der Molen MW (1991) Discovery of the P300: a tribute. Biol Psychol 32:155–171PubMedCrossRefGoogle Scholar
  7. Beets MGJ (1970) The molecular parameters of olfactory response. Pharmacol Rev 22:1–34PubMedGoogle Scholar
  8. Berchou R, Chayasirisobhon S, Green V, Mason K (1986) The pharmacodynamic properties of lorazepam and methylphenidate drugs on event-related potentials and power spectral analysis in normal subjects. Clin Electroencephalogr 17:176–180PubMedGoogle Scholar
  9. Borsini F (1995) Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev 19:377–395PubMedCrossRefGoogle Scholar
  10. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544PubMedCrossRefGoogle Scholar
  11. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222PubMedCrossRefGoogle Scholar
  12. Buttery RG, Teranishi R, Ling LC (1987) Fresh tomato aroma volatiles: a quantitative study. J Agric Food Chem 35:540–544CrossRefGoogle Scholar
  13. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252PubMedCrossRefGoogle Scholar
  14. Collewijn H, van der Steen J, Steinman RM (1985) Human eye movements associated with blinks and prolonged eyelid closure. J Neurophysiol 54:11–27PubMedGoogle Scholar
  15. Critchley HD (2005) Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol 493:154–166PubMedCrossRefGoogle Scholar
  16. Dade LA, Jones-Gotman M, Zatorre RJ, Evans AC (1998) Human brain function during odor encoding and recognition. A PET activation study. Ann N Y Acad Sci 855:572–574PubMedCrossRefGoogle Scholar
  17. Da-Rocha MA, Puech AJ, Thiebot MH (1997) Influence of anxiolytic drugs on the effects of specific serotonin reuptake inhibitors in the forced swimming test in mice. J Psychopharmacol 11:211–218PubMedCrossRefGoogle Scholar
  18. de Almeida RN, Motta SC, de Brito Faturi C, Catallani B, Leite JR (2004) Anxiolytic-like effects of rose oil inhalation on the elevated plus-maze test in rats. Pharmacol Biochem Behav 77:361–364PubMedCrossRefGoogle Scholar
  19. Delplanque S, Lavoie ME, Hot P, Silvert L, Sequeira H (2004) Modulation of cognitive processing by emotional valence studied through event-related potentials in humans. Neurosci Lett 356:1–4PubMedCrossRefGoogle Scholar
  20. Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73:43–46PubMedCrossRefGoogle Scholar
  21. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72PubMedCrossRefGoogle Scholar
  22. Detke MJ, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5:107–112PubMedCrossRefGoogle Scholar
  23. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306PubMedCrossRefGoogle Scholar
  24. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374CrossRefGoogle Scholar
  25. Drevets WC, Raichle ME (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition. Cogn Emot 12:353–385CrossRefGoogle Scholar
  26. Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JM, Linthorst AC (2008) Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149:3244–3253PubMedCrossRefGoogle Scholar
  27. Endres T, Fendt M (2008) Inactivation of the lateral septum blocks fox odor-induced fear behavior. NeuroReport 19:667–670PubMedCrossRefGoogle Scholar
  28. File SE, Zangrossi H, Sanders FL, Mabbutt PS (1994) Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacology 113:543–546PubMedCrossRefGoogle Scholar
  29. Fujita S, Ueki S, Miyoshi M, Watanabe T (2010) “Green odor” inhalation by stressed rat dams reduces behavioral and neuroendocrine signs of prenatal stress in the offspring. Horm Behav 58:264–272PubMedCrossRefGoogle Scholar
  30. Fukami G, Hashimoto T, Shirayama Y, Hasegawa T, Watanabe H, Fujisaki M, Hashimoto K, Iyo M (2010) Effects of etizolam and ethyl loflazepate on the P300 event-related potential in healthy subjects. Ann Gen Psychiatry 9:37PubMedCentralPubMedCrossRefGoogle Scholar
  31. Gray HM, Ambady N, Lowenthal WT, Deldin P (2004) P300 as an index of attention to self-relevant stimuli, 2nd edn. Elsevier Science, Netherlands, pp 216–224Google Scholar
  32. Hamaguchi-Hamada K, Sanbo C, Hamada S, Yagi T (2004) Exposure to hexanal odor influences maternal behavior and induces neonatal death in Fyn tyrosine kinase-deficient mice. Neurosci Res 48:259–267PubMedCrossRefGoogle Scholar
  33. Hashimoto S, Inoue T, Koyama T (1999) Effects of conditioned fear stress on serotonin neurotransmission and freezing behavior in rats. Eur J Pharmacol 378:23–30PubMedCrossRefGoogle Scholar
  34. Hatanaka A (1993) The biogeneration of green odor by green leaves. Phytochemistry 34:1201–1218CrossRefGoogle Scholar
  35. Hatanaka A, Ohno M (1971) Leaf alcohol: chromic acid oxidation of isomeric hexenols. Agric Biol Chem 35:1044–1051CrossRefGoogle Scholar
  36. Hatanaka A, Kajiwara T, Sekiya J (1976a) Biosynthesis of trans-2-hexenal in chloroplasts from Thea sinensis. Phytochemistry 15:1125–1126CrossRefGoogle Scholar
  37. Hatanaka A, Kajiwara T, Sekiya J (1976b) Seasonal variations in trans-2-hexenal and linolenic acid in homogenates of Thea sinensis leaves. Phytochemistry 15:1889–1891CrossRefGoogle Scholar
  38. Hiramatsu K, Yamada T, Katakura M (1984) Acute effects of cold on blood pressure, renin-angiotensin-aldosterone system, catecholamines and adrenal steroids in man. Clin Exp Pharmacol Physiol 11:171–179PubMedCrossRefGoogle Scholar
  39. Igarashi KM, Mori K (2005) Spatial representation of hydrocarbon odorants in the ventrolateral zones of the rat olfactory bulb. J Neurophysiol 93:1007–1019PubMedCrossRefGoogle Scholar
  40. Iijima M, Osawa M, Nishitani N, Iwata M (2009) Effects of incense on brain function: evaluation using electroencephalograms and event-related potentials. Neuropsychobiology 59:80–86PubMedCrossRefGoogle Scholar
  41. Ito A, Miyoshi M, Ueki S, Fukada M, Komaki R, Watanabe T (2009) “Green odor” inhalation by rats down-regulates stress-induced increases in Fos expression in stress-related forebrain regions. Neurosci Res 65:166–174PubMedCrossRefGoogle Scholar
  42. Iwasaki M, Kellinghaus C, Alexopoulos AV, Burgess RC, Kumar AN, Han YH, Luders HO, Leigh RJ (2005) Effects of eyelid closure, blinks, and eye movements on the electroencephalogram. Clin Neurophysiol 116:878–885PubMedCrossRefGoogle Scholar
  43. Jaeger SR, McRae JF, Salzman Y, Williams L, Newcomb RD (2010) A preliminary investigation into a genetic basis for cis-3-hexen-1-ol odor perception: a genome-wide association approach. Food Qual Prefer 21:121–131CrossRefGoogle Scholar
  44. Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270:644–646PubMedCrossRefGoogle Scholar
  45. Jasper MS, Engeland WC (1994) Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 59:97–109PubMedCrossRefGoogle Scholar
  46. Kako H, Fukumoto Y, Kobayashi Y, Yokogoshi H (2008) Effects of direct exposure of green odor components on dopamine release from rat brain striatal slices and PC12 cells. Brain Res Bull 75:706–712PubMedCrossRefGoogle Scholar
  47. Kako H, Kobayashi Y, Yokogoshi H (2011) Effects of n-hexanal on dopamine release in the striatum of living rats. Eur J Pharmacol 651:77–82PubMedCrossRefGoogle Scholar
  48. Kako H, Kobayashi Y, Yokogoshi H (2012) Dopamine release from rat pheochromocytoma (PC12) cells and rat brain striata induced by a series of straight carbon chain aldehydes with variations in carbon chain length and functional groups. Eur J Pharmacol 691:86–92PubMedCrossRefGoogle Scholar
  49. Kettenmann B, Jousmaki V, Portin K, Salmelin R, Kobal G, Hari R (1996) Odorants activate the human superior temporal sulcus. Neurosci Lett 203:143–145PubMedCrossRefGoogle Scholar
  50. Kim J, Ishibashi M, Nakajima K, Aou SJ, Hatanaka A, Oomura Y, Sasaki K (2005) Effects of green odor on expression of Fos-immunoreactivity in the paraventricular nucleus of the thalamus in forced swimming rats. Chem Senses 30:I266–I1267PubMedCrossRefGoogle Scholar
  51. Kobayashi Y, Kako H, Yokogoshi H (2010) Contribution of intracellular Ca2+ concentration and protein dephosphorylation to the induction of dopamine release from PC12 cells by the green odor compound hexanal. Cell Mol Neurobiol 30:173–184Google Scholar
  52. Komiya M, Takeuchi T, Harada E (2006) Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav Brain Res 172:240–249PubMedCrossRefGoogle Scholar
  53. Lehrner J, Eckersberger C, Walla P, Potsch G, Deecke L (2000) Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. Physiol Behav 71:83–86PubMedCrossRefGoogle Scholar
  54. Lledo PM, Gheusi G, Vincent JD (2005) Information processing in the mammalian olfactory system. Physiol Rev 85:281–317PubMedCrossRefGoogle Scholar
  55. Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911–923PubMedCrossRefGoogle Scholar
  56. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedCrossRefGoogle Scholar
  57. Masago R, Matsuda T, Kikuchi Y, Miyazaki Y, Iwanaga K, Harada H, Katsuura T (2000) Effects of inhalation of essential oils on EEG activity and sensory evaluation. J Physiol Anthropol Appl Human Sci 19:35–42PubMedCrossRefGoogle Scholar
  58. McBride K, Slotnick B (2006) Discrimination between the enantiomers of carvone and of terpinen-4-ol odorants in normal rats and those with lesions of the olfactory bulbs. J Neurosci 26:9892–9901PubMedCrossRefGoogle Scholar
  59. McRae JF, Mainland JD, Jaeger SR, Adipietro KA, Matsunami H, Newcomb RD (2012) Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the “grassy” smelling odor, cis-3-hexen-1-ol. Chem Senses 37:585–593PubMedCentralPubMedCrossRefGoogle Scholar
  60. Mikics E, Barsy B, Barsvari B, Haller J (2005) Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Horm Behav 48:152–162PubMedCrossRefGoogle Scholar
  61. Mohanty A, Engels AS, Herrington JD, Heller W, Ho MHR, Banich MT, Webb AG, Warren SL, Miller GA (2007) Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology 44:343–351PubMedCrossRefGoogle Scholar
  62. Molloy AG, Waddington JL (1988) Behavioural responses to the selective D1-dopamine receptor agonist R-SK&F 38393 and the selective D2-agonist RU 24213 in young compared with aged rats. Br J Pharmacol 95:335–342PubMedCentralPubMedCrossRefGoogle Scholar
  63. Mori K, Yoshihara Y (1995) Molecular recognition and olfactory processing in the mammalian olfactory system. Prog Neurobiol 45:585–619PubMedCrossRefGoogle Scholar
  64. Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715PubMedCrossRefGoogle Scholar
  65. Mori K, Takahashi YK, Igarashi K, Nagayama S (2005) Odor maps in the dorsal and lateral surfaces of the rat olfactory bulb. Chem Senses 30:I103–I1104PubMedCrossRefGoogle Scholar
  66. Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the Mammalian olfactory bulb. Physiol Rev 86:409–433PubMedCrossRefGoogle Scholar
  67. Motokizawa F (1974) Electrophysiological studies of olfactory projection to the mesencephalic reticular formation. Exp Neurol 44:135–144PubMedCrossRefGoogle Scholar
  68. Moussaieff A, Rimmerman N, Bregman T, Straiker A, Felder CC, Shoham S, Kashman Y, Huang SM, Lee H, Shohami E, Mackie K, Caterina MJ, Walker JM, Fride E, Mechoulam R (2008) Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J 22:3024–3034PubMedCentralPubMedCrossRefGoogle Scholar
  69. Nakashima T, Akamatsu M, Hatanaka A, Kiyohara T (2004) Attenuation of stress-induced elevations in plasma ACTH level and body temperature in rats by green odor. Physiol Behav 80:481–488PubMedCrossRefGoogle Scholar
  70. Nakatomi Y, Yokoyama C, Kinoshita S, Masaki D, Tsuchida H, Onoe H, Yoshimoto K, Fukui K (2008) Serotonergic mediation of the anti depressant-like effect of the green leaves odor in mice. Neurosci Lett 436:167–170PubMedCrossRefGoogle Scholar
  71. Ngai J, Dowling MM, Buck L, Axel R, Chess A (1993) The family of genes encoding odorant receptors in the channel catfish. Cell 72:657–666PubMedCrossRefGoogle Scholar
  72. Nikaido Y, Nakashima T (2009) Effects of environmental novelty on fear-related behavior and stress responses of rats to emotionally relevant odors. Behav Brain Res 199:241–246PubMedCrossRefGoogle Scholar
  73. Nikaido Y, Nakashima T (2011) Different patterns of neuronal activities in the infralimbic and prelimbic cortices and behavioral expression in response to two affective odors, 2,5-dihydro-2,4,5-trimethylthiazoline and a mixture of cis-3-hexenol and trans-2-hexenal, in the freely moving rat. Behav Brain Res 218:218–227PubMedCrossRefGoogle Scholar
  74. Oka T, Hayashida S, Kaneda Y, Takenaga M, Tamagawa Y, Tsuji S, Hatanaka A (2008) Green odor attenuates a cold pressor test-induced cardiovascular response in healthy adults. Biopsychosoc Med 2:2PubMedCentralPubMedCrossRefGoogle Scholar
  75. Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology 147:162–167PubMedCrossRefGoogle Scholar
  76. Pause BM, Krauel K (2000) Chemosensory event-related potentials (CSERP) as a key to the psychology of odors. Int J Psychophysiol 36:105–122PubMedCrossRefGoogle Scholar
  77. Poellinger A, Thomas R, Lio P, Lee A, Makris N, Rosen BR, Kwong KK (2001) Activation and habituation in olfaction—an fMRI study. Neuroimage 13:547–560PubMedCrossRefGoogle Scholar
  78. Polich J (2004) Clinical application of the P300 event-related brain potential. Phys Med Rehabil Clin N Am 15:133–161PubMedCrossRefGoogle Scholar
  79. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391PubMedCrossRefGoogle Scholar
  80. Potter SM, Zheng C, Koos DS, Feinstein P, Fraser SE, Mombaerts P (2001) Structure and emergence of specific olfactory glomeruli in the mouse. J Neurosci 21:9713–9723PubMedCentralPubMedGoogle Scholar
  81. Ressler KJ, Sullivan SL, Buck LB (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73:597–609PubMedCrossRefGoogle Scholar
  82. Rockstroh B, Elbert T, Lutzenberger W, Altenmuller E (1991) Effects of the anticonvulsant benzodiazepine clonazepam on event-related brain potentials in humans. Electroencephalogr Clin Neurophysiol 78:142–149PubMedCrossRefGoogle Scholar
  83. Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF (1999) Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol Behav 68:47–53PubMedCrossRefGoogle Scholar
  84. Rolls ET, Kringelbach ML, de Araujo IE (2003a) Different representations of pleasant and unpleasant odors in the human brain. Eur J Neurosci 18:695–703PubMedCrossRefGoogle Scholar
  85. Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003b) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13:308–317PubMedCrossRefGoogle Scholar
  86. Sano A, Sei H, Seno H, Morita Y, Moritoki H (1998) Influence of cedar essence on spontaneous activity and sleep of rats and human daytime nap. Psychiatry Clin Neurosci 52:133–135PubMedCrossRefGoogle Scholar
  87. Sano K, Tsuda Y, Sugano H, Aou S, Hatanaka A (2002) Concentration effects of green odor on event-related potential (P300) and pleasantness. Chem Senses 27:225–230PubMedCrossRefGoogle Scholar
  88. Sasabe T, Kobayashi M, Kondo Y, Onoe H, Matsubara S, Yamamoto S, Tsukada H, Onoe K, Watabe H, Iida H, Kogo M, Sano K, Hatanaka A, Sawada T, Watanabe Y (2003) Activation of the anterior cingulate gyrus by ‘green odor’: a positron emission tomography study in the monkey. Chem Senses 28:565–572PubMedCrossRefGoogle Scholar
  89. Schoenfeld TA, Cleland TA (2006) Anatomical contributions to odorant sampling and representation in rodents: zoning in on sniffing behavior. Chem Senses 31:131–144PubMedCrossRefGoogle Scholar
  90. Schoenfeld TA, Knott TK (2004) Evidence for the disproportionate mapping of olfactory airspace onto the main olfactory bulb of the hamster. J Comp Neurol 476:186–201PubMedCrossRefGoogle Scholar
  91. Semlitsch HV, Anderer P, Saletu B (1995) Acute effects of the anxiolytics suriclone and alprazolam on cognitive information processing utilizing topographic mapping of event-related brain potentials (P300) in healthy subjects. Eur J Clin Pharmacol 49:183–191PubMedCrossRefGoogle Scholar
  92. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JDE (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286PubMedCrossRefGoogle Scholar
  93. Spruijt BM, Cools AR, Ellenbroek BA, Gispen WH (1986) Dopaminergic modulation of ACTH-induced grooming. Eur J Pharmacol 120:249–256PubMedCrossRefGoogle Scholar
  94. Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72:825–852PubMedGoogle Scholar
  95. Steimer T, Driscoll P (2003) Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress 6:87–100PubMedCrossRefGoogle Scholar
  96. Takahashi YK, Kurosaki M, Hirono S, Mori K (2004) Topographic representation of odorant molecular features in the rat olfactory bulb. J Neurophysiol 92:2413–2427PubMedCrossRefGoogle Scholar
  97. Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, Singer B, McEwen BS, Lindon JC, Nicholson JK, Holmes E (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6:2080–2093PubMedCrossRefGoogle Scholar
  98. Tokumo K, Tamura N, Hirai T, Nishio H (2006) Effects of (Z)-3-hexenol, a major component of green odor, on anxiety-related behavior of the mouse in an elevated plus-maze test and biogenic amines and their metabolites in the brain. Behav Brain Res 166:247–252PubMedCrossRefGoogle Scholar
  99. Tonoike M, Yoshida T, Sakuma H, Wang LQ (2013) fMRI measurement of the integrative effects of visual and chemical senses stimuli in humans. J Integr Neurosci 12:369–384PubMedCrossRefGoogle Scholar
  100. Tsigos C, Chrousos GP (1994) Physiology of the hypothalamic-pituitary-adrenal axis in health and dysregulation in psychiatric and autoimmune disorders. Endocrinol Metab Clin North Am 23:451–466PubMedGoogle Scholar
  101. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871PubMedCrossRefGoogle Scholar
  102. Ulrich-Lai YM, Arnhold MM, Engeland WC (2006) Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol 290:R1128–R1135PubMedCrossRefGoogle Scholar
  103. Urata J, Uchiyama M, Iyo M, Enomoto T, Hayakawa T, Tomiyama M, Nakajima T, Sasaki H, Shirakawa S, Wada K, Fukui S, Yamadera H, Okawa M (1996) Effects of a small dose of triazolam on P300 and resting EEG. Psychopharmacology 125:179–184PubMedCrossRefGoogle Scholar
  104. Vassar R, Ngai J, Axel R (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74:309–318PubMedCrossRefGoogle Scholar
  105. Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991PubMedCrossRefGoogle Scholar
  106. Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443PubMedGoogle Scholar
  107. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328PubMedCentralPubMedCrossRefGoogle Scholar
  108. Walhovd KB, Fjell AM (2003) The relationship between P3 and neuropsychological function in an adult life span sample. Biol Psychol 62:65–87PubMedCrossRefGoogle Scholar
  109. Ward Thompson C, Roe J, Aspinall P, Mitchell R, Clow A, Miller D (2012) More green space is linked to less stress in deprived communities: evidence from salivary cortisol patterns. Landsc Urban Plan 105:221–229CrossRefGoogle Scholar
  110. Watanabe Y, Sasabe T, Yamaguti K, Kobayashi M, Yamamoto S, Kuratsune H, Sano K, Hatanaka A, Tsukada H, Onoe H (2005) Prevention and/or recovery effects by green odor(s) on fatigue and green-odor-responsible brain regions as revealed by PET. Chem Senses 30:I268–I1269PubMedCrossRefGoogle Scholar
  111. Watanabe T, Fujihara M, Murakami E, Miyoshi M, Tanaka Y, Koba S, Tachibana H (2011) Green odor and depressive-like state in rats: toward an evidence-based alternative medicine? Behav Brain Res 224:290–296PubMedCrossRefGoogle Scholar
  112. Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of southern and eastern Africa: being an account of their medicinal and other uses, chemical composition, pharmacological effects and toxicology in man and animal, 2nd edn. Livingstone, EdinburghGoogle Scholar
  113. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC, Jenike MA, Rauch SL (1998) The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol Psychiatry 44:1219–1228PubMedCrossRefGoogle Scholar
  114. Whishaw IQ, Kolb B (2005) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, OxfordGoogle Scholar
  115. Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E (1992) Functional localization and lateralization of human olfactory cortex. Nature 360:339–340PubMedCrossRefGoogle Scholar
  116. Zatorre RJ, Jones-Gotman M, Rouby C (2000) Neural mechanisms involved in odor pleasantness and intensity judgments. Neuroreport 11:2711–2716PubMedCrossRefGoogle Scholar
  117. Zhao K, Dalton P, Yang GC, Scherer PW (2006) Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem Senses 31:107–118PubMedCrossRefGoogle Scholar
  118. Zou ZH, Li FS, Buck LB (2005) Odor maps in the olfactory cortex. Proc Natl Acad Sci USA 102:7724–7729PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jereme G. Spiers
    • 1
  • Hsiao-Jou Cortina Chen
    • 1
  • Nickolas A. Lavidis
    • 1
  1. 1.School of Biomedical SciencesThe University of QueenslandSt. LuciaAustralia

Personalised recommendations