Skip to main content
Log in

Natural products and their derivatives as inhibitors of glycogen phosphorylase: potential treatment for type 2 diabetes

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Glycogen phosphorylase (GP) (EC 2.4.1.1) is an important therapeutic target for the potential treatment of type 2 diabetes. The search for potent, selective and drug-like GP inhibitors which may eventually lead to hypoglycaemic agents has to date uncovered a number of natural product inhibitors with both pharmaceutical and nutraceutical potential. GP is an allosteric protein with at least six different ligand binding sites that modulate its enzymatic activity. Hence, inhibitors with considerable structural diversity can be designed. This review is focused on advances in the discovery of natural products and their derivatives as GP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agius L (2010) Physiological control of liver glycogen metabolism: lessons from novel glycogen phosphorylase inhibitors. Mini Rev Med Chem 10:1175–1187

    CAS  PubMed  Google Scholar 

  • Andersen B, Rassov A, Westergaard N, Lundgren K (1999) Inhibition of glycogenolysis in primary rat hepatocytes by 1,4-dideoxy-1,4-imino-D-arabinitol. Biochem J 342(Pt 3):545–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49:4208–4213

    CAS  PubMed  Google Scholar 

  • Barford D, Johnson LN (1989) The allosteric transition of glycogen phosphorylase. Nature 340:609–616

    CAS  PubMed  Google Scholar 

  • Barford D, Hu SH, Johnson LN (1991) Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218:233–260

    CAS  PubMed  Google Scholar 

  • Benltifa M, Vidal S, Fenet B, Msaddek M, Goekjian PG, Praly J-P, Brunyanszki A, Docsa T, Gergely P (2006) In search of glycogen phosphorylase inhibitors: 5-substituted 3-C-glucopyranosyl-1,2,4-oxadiazoles from β-D-glucopyranosyl cyanides upon cyclization of O-acylamidoxime intermediates. Eur J Org Chem 18:4242–4256

    Google Scholar 

  • Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly J-P, Kizilis G, Tiraidis C, Alexacou KM, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG (2009) Glucose-based spiro-isoxazolines: a new family of potent glycogen phosphorylase inhibitors. Bioorg Med Chem 17:7368–7380

    CAS  PubMed  Google Scholar 

  • Bergans N, Stalmans W, Goldmann S, Vanstapel F (2000) Molecular mode of inhibition of glycogenolysis in rat liver by the dihydropyridine derivative, BAY R3401: inhibition and inactivation of glycogen phosphorylase by an activated metabolite. Diabetes 49:1419–1426

    CAS  PubMed  Google Scholar 

  • Bokor E, Docsa T, Gergely P, Somsak L (2010) Synthesis of 1-(D-glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen phosphorylase inhibitors. Bioorg Med Chem 18:1171–1180

    CAS  PubMed  Google Scholar 

  • Bokor E, Docsa T, Gergely P, Somsak L (2013) C-Glucopyranosyl-1,2,4-triazoles As new potent inhibitors of glycogen phosphorylase. ACS Med Chem Lett 4:47–50

    Google Scholar 

  • Butler MS (2005) Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 22:162–195

    CAS  PubMed  Google Scholar 

  • Chen J, Liu J, Gong YC, Zhang LY, Hua WY, Sun HB (2006a) Synthesis and biological evaluation of urosolic acid derivatives as novel inhibitors of glycogen phosphorylase. J China Pharm Univ 37:397–402

    CAS  Google Scholar 

  • Chen J, Liu J, Zhang LY, Wu GZ, Hua WY, Wu XM, Sun HB (2006b) Pentacyclic triterpenes. Part 3: synthesis and biological evaluation of oleanolic acid derivatives as novel inhibitors of glycogen phosphorylase. Bioorg Med Chem Lett 16:2915–2919

    CAS  PubMed  Google Scholar 

  • Chen J, Gong YC, Liu J, Hua WY, Zhang LY, Sun HB (2008) Synthesis and biological evaluation of novel pyrazolo[4,3-b]oleanane derivatives as inhibitors of glycogen phosphorylase. Chem Biodivers 5:1304–1312

    CAS  PubMed  Google Scholar 

  • Cheng K, Liu J, Liu X, Li H, Sun H, Xie J (2009) Synthesis of glucoconjugates of oleanolic acid as inhibitors of glycogen phosphorylase. Carbohydr Res 344:841–850

    CAS  PubMed  Google Scholar 

  • Cheng K, Liu J, Sun H, Bokor E, Czifrak K, Konya B, Toth M, Docsa T, Gergely P, Somsak L (2010a) Tethered derivatives of D-glucose and pentacyclic triterpenes for homo/heterobivalent inhibition of glycogen phosphorylase. New J Chem 34:1450–1464

    CAS  Google Scholar 

  • Cheng KG, Liu J, Sun HB, Xie J (2010b) Synthesis of oleanolic acid dimers as inhibitors of glycogen phosphorylase. Chem Biodivers 7:690–697

    CAS  PubMed  Google Scholar 

  • Cheng KG, Wang C, Liu J, Xie J, Sun HB (2010c) Synthesis and evaluation of C-28 oleanolic acid derivatives as inhibitors of glycogen phosphorylase. Lett Drug Des Discov 7:116–121

    CAS  Google Scholar 

  • Chinese Pharmacopoeia Editorial Committee (1995) Vol 1. People’s Health Publisher, Beijing

  • Chrysina ED (2010) The prototype of glycogen phosphorylase. Mini Rev Med Chem 10:1093–1101

    CAS  PubMed  Google Scholar 

  • Chrysina ED, Bokor E, Alexacou KM, Charavgi MD, Oikonomakos GN, Zographos SE, Leonidas DD, Oikonomakos NG, Laszlo S (2009) Amide-1, 2, 3-triazole bioisosterism: the glycogen phosphorylase case. Tetrahedron: Asymm 20:733–740

    CAS  Google Scholar 

  • Cohen P (2006) The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7:867–873

    CAS  PubMed  Google Scholar 

  • Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 9785:31–40

    Google Scholar 

  • Daview TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble MEM (2001) Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-Cyclin A/Indirubin-5-sulphonate. Structure 9:389–397

    Google Scholar 

  • Docsa T, Czifrak K, Huse C, Somsak L, Gergely P (2011) Effect of glucopyranosylidene-spiro-thiohydantoin on glycogen metabolism in liver tissues of streptozotocin-induced and obese diabetic rats. Mol Med Rep 4:477–481

    CAS  PubMed  Google Scholar 

  • Felföldi N (2009) Department of Chemistry, PhD. University of Debrecen, Debrecen

  • Fosgerau K, Westergaard N, Quistorff B, Grunnet N, Kristiansen M, Lundgren K (2000) Kinetic and functional characterization of 1,4-dideoxy-1, 4-imino-d-arabinitol: a potent inhibitor of glycogen phosphorylase with anti-hyperglyceamic effect in ob/ob mice. Arch Biochem Biophys 380:274–284

    CAS  PubMed  Google Scholar 

  • Furukawa S, Murakami K, Nishikawa M, Nakayama O, Hino M (2005) FR258900, a novel glycogen phosphorylase inhibitor isolated from fungus no. 138354. II. Anti-hyperglycemic effects in diabetic animal models. J Antibiot (Tokyo) 58:503–506

    CAS  Google Scholar 

  • Gershell L (2005) Type 2 diabetes market. Nat Rev Drug Discov 4:367–368

    CAS  PubMed  Google Scholar 

  • Goldsmith EJ, Fletterick RJ, Withers SG (1987) The three-dimensional structure of Acarbose bound to glycogen phosphorylase. J Biol Chem 262:1449–1455

    CAS  PubMed  Google Scholar 

  • Goyard D, Baron M, Skourti PV, Chajistamatiou AS, Docsa T, Gergely P, Chrysina ED, Praly J-P, Vidal S (2012) Synthesis of 1,2,3-triazoles from xylosyl and 5-thioxylosyl azides: evaluation of the xylose scaffold for the design of potential glycogen phosphorylase inhibitors. Carbohyd Res 364:28–40

    CAS  Google Scholar 

  • Gyorgydeak Z, Hadady Z, Felfoldi N, Krakomperger A, Nagy V, Toth M, Brunyanszki A, Docsa T, Gergely P, Somsak L (2004) Synthesis of N-(β-D-glucopyranosyl)- and N-(2-acetamido-2-deoxy-β-D-glucopyranosyl) amides as inhibitors of glycogen phosphorylase. Bioorg Med Chem 12:4861–4870

    PubMed  Google Scholar 

  • Habash M, Taha MO (2011) Ligand-based modelling followed by synthetic exploration unveil novel glycogen phosphorylase inhibitory leads. Bioorg Med Chem 19:4746–4771

    CAS  PubMed  Google Scholar 

  • Hampson LJ, Arden C, Agius L, Ganotidis M, Kosmopoulou MN, Tiraidis C, Elemes Y, Sakarellos C, Leonidas DD, Oikonomakos NG (2006) Bioactivity of glycogen phosphorylase inhibitors that bind to the purine nucleoside site. Bioorg Med Chem 14:7835–7845

    CAS  PubMed  Google Scholar 

  • Hao J, Zhang P, Wen XA, Sun HB (2008) Efficient access to 2-isobetulinic acid, 2-isooleanolic acid, and 2-isoursolic acid. J Org Chem 73:7405–7408

    CAS  PubMed  Google Scholar 

  • Hayes JM, Leonidas DD (2010) Computation as a tool for glycogen phosphorylase inhibitor design. Mini Rev Med Chem 10:1156–1174

    CAS  PubMed  Google Scholar 

  • Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG (2011) Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Proteins Struct Func Bioinf 79:703–719

    CAS  Google Scholar 

  • Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A (1997) Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest 100:1305–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J (2003) Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Structure 11:1329–1337

    CAS  PubMed  Google Scholar 

  • Hoover DJ, Lefkowitz-Snow S, Burgess-Henry JL, Martin WH, Armento SJ, Stock IA, McPherson RK, Genereux PE, Gibbs EM, Treadway JL (1998) Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem 41:2934–2938

    CAS  PubMed  Google Scholar 

  • Horne G, Wilson FX, Tinsley J, Williams DH, Storer R (2011) Iminosugars past, present and future: medicines for tomorrow. Drug Discov Today 16:107–118

    CAS  PubMed  Google Scholar 

  • Hudson JW, Golding GB, Crerar MM (1993) Evolution of allosteric control in glycogen-phosphorylase. J Mol Biol 234:700–721

    CAS  PubMed  Google Scholar 

  • Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob JR, Mansfield K, You JE, Tennant BC, Kim YH (2007) Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J Microbiol 45:431–440

    CAS  PubMed  Google Scholar 

  • Jakobs S, Fridrich D, Hofem S, Pahlke G, Eisenbrand G (2006) Natural flavonoids are potent inhibitors of glycogen phosphorylase. Mol Nutr Food Res 50:52–57

    CAS  PubMed  Google Scholar 

  • Jautelat R, Brumby T, Schafer M, Briem H, Eisenbrand G, Schwahn S, Kruger M, Lucking U, Prien O, Siemeister G (2005) From the insoluble dye indirubin towards highly active, soluble CDK2-inhibitors. ChemBioChem 6:531–540

    CAS  PubMed  Google Scholar 

  • Johnson LN (1992) Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J 6:2274–2282

    CAS  PubMed  Google Scholar 

  • Johnson LN, Snape P, Martin JL, Acharya KR, Barford D, Oikonomakos NG (1993) Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b. J Mol Biol 232:253–267

    CAS  PubMed  Google Scholar 

  • Jones RM (2012) New therapeutic strategies for type 2 diabetes: small molecule approaches. RSC drug discovery series no 27, Cambridge, UK

  • Kaiser A, Nishi K, Gorin FA, Walsh DA, Bradbury EM, Schnier JB (2001) The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch Biochem Biophys 386:179–187

    CAS  PubMed  Google Scholar 

  • Kalra EK (2003) Nutraceutical-definition and introduction. AAPS PharmSci 5:E25

    PubMed  Google Scholar 

  • Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, Asano N, Adachi I, Kato A (2010) In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem 122:1061–1066

    CAS  Google Scholar 

  • Kantsadi AL, Hayes JM, Manta S, Skamnaki VT, Kiritsis C, Psarra AM, Koutsogiannis Z, Dimopoulou A, Theofanous S, Nikoleousakos N, Zoumpoulakis P, Kontou M, Papadopoulos G, Zographos SE, Komiotis D, Leonidas DD (2012a) The sigma-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b. ChemMedChem 7:722–732

    CAS  PubMed  Google Scholar 

  • Kantsadi AL, Manta S, Psarra AM, Dimopoulou A, Kiritsis C, Parmenopoulou V, Skamnaki VT, Zoumpoulakis P, Zographos SE, Leonidas DD, Komiotis D (2012b) The binding of C5-alkynyl and alkylfurano[2,3-d]pyrimidine glucopyranonucleosides to glycogen phosphorylase b: synthesis, biochemical and biological assessment. Eur J Med Chem 54:740–749

    CAS  PubMed  Google Scholar 

  • Kantsadi AL, Apostolou A, Theofanous S, Stravodimos GA, Kyriakis E, Gorgogietas VA, Chatzileontiadou DSM, Pegiou K, Skamnaki VT, Stagos D, Kouretas D, Psarra A-MG, Haroutounian SA, Leonidas DD (2014) Biochemical and biological assessment of the inhibitory potency of extracts from vinification by products of Vitis vinifera extracts against glycogen phosphorylase. Food Chem Toxicol 67:35–43

    CAS  PubMed  Google Scholar 

  • Kasvinsky PJ, Madsen NB, Fletterick RJ, Sygusch J (1978a) X-ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase. J Biol Chem 253:1290–1296

    CAS  PubMed  Google Scholar 

  • Kasvinsky PJ, Madsen NB, Sygusch J, Fletterick RJ (1978b) Regulation of glycogen phosphorylase-a by nucleotide derivatives—kinetic and X-ray crystallographic studies. J Biol Chem 253:3343–3351

    CAS  PubMed  Google Scholar 

  • Kato A, Nasu N, Takebayashi K, Adachi I, Minami Y, Sanae F, Asano N, Watson AA, Nash RJ (2008a) Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase. J Agric Food Chem 56:4469–4473

    CAS  PubMed  Google Scholar 

  • Kato A, Minoshima Y, Yamamoto J, Adachi I, Watson AA, Nash RJ (2008b) Protective effects of dietary chamomile tea on diabetic complications. J Agric Food Chem 56:8206–8211

    CAS  PubMed  Google Scholar 

  • Kato A, Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, Asano N, Adachi I (2010) In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem 122:1061–1066

    Google Scholar 

  • Klabunde T, Wendt KU, Kadereit D, Brachvogel V, Burger HJ, Herling AW, Oikonomakos NG, Kosmopoulou MN, Schmoll D, Sarubbi E, von Roedern E, Schonafinger K, Defossa E (2005) Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J Med Chem 48:6178–6193

    CAS  PubMed  Google Scholar 

  • Kosmopoulou MN, Leonidas DD, Chrysina ED, Bischler N, Eisenbrand G, Sakarellos CE, Pauptit R, Oikonomakos NG (2004) Binding of the potential antitumour agent indirubin-5-sulphonate at the inhibitor site of rabbit muscle glycogen phosphorylase b—comparison with ligand binding to pCDK2-cyclin A complex. Eur J Biochem 271:2280–2290

    CAS  PubMed  Google Scholar 

  • Kosmopoulou MN, Leonidas DD, Chrysina ED, Eisenbrand G, Oikonomakos NG (2005) Indirubin-3′-aminooxy-acetate inhibits glycogen phosphorylase by binding at the inhibitor and the allosteric site. Broad specificities of the two sites. Lett Drug Des Discov 2:377–390

    CAS  Google Scholar 

  • Krimm I, Lancelin J-M, Praly J-P (2012) Binding evaluation of fragment-based scaffolds for probing allosteric enzymes. J Med Chem 55:1287–1295

    CAS  PubMed  Google Scholar 

  • Kun S, Bokor É, Varga G, Szőcs B, Páhi A, Czifrák K, Tóth M, Juhász L, Docsa T, Gergely P, Somsák L (2014) New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase. Eur J Med Chem 76:567–579

    CAS  PubMed  Google Scholar 

  • Kuriyama C, Kamiyama O, Ikeda K, Sanae F, Kato A, Adachi I, Imahori T, Takahata H, Okamoto T, Asano N (2008) In vitro inhibition of glycogen-degrading enzymes and glycosidases by six-membered sugar mimics and their evaluation in cell cultures. Bioorg Med Chem 16:7330–7336

    CAS  PubMed  Google Scholar 

  • Lahlou M (2007) Screening of natural products for drug discovery. Expert Opin Drug Discov 2:697–705

    CAS  PubMed  Google Scholar 

  • Latsis T, Andersen B, Agius L (2002) Diverse effects of two allosteric inhibitors on the phosphorylation state of glycogen phosphorylase in hepatocytes. Biochem J 368:309–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leonidas DD, Oikonomakos NG, Papageorgiou AC, Xenakis A, Cazianis CT, Bem F (1990) The ammonium sulfate activation of phosphorylase b. FEBS Lett 261:23–27

    CAS  PubMed  Google Scholar 

  • Liang Z, Zhang L, Li L, Liu J, Li H, Chen L, Cheng K, Zheng M, Wen X, Zhang P, Hao J, Gong Y, Zhang X, Zhu X, Chen J, Liu H, Jiang H, Luo C, Sun H (2011) Identification of pentacyclic triterpenes derivatives as potent inhibitors against glycogen phosphorylase based on 3D-QSAR studies. Eur J Med Chem 46:2011–2021

    CAS  PubMed  Google Scholar 

  • Lorenzo C, Wagenknecht LE, D’Agostino RB Jr, Rewers MJ, Karter AJ, Haffner SM (2010) Insulin resistance, β-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: the insulin resistance atherosclerosis study. Diabetes Care 33:67–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loughlin WA (2010) Recent advances in the allosteric inhibition of glycogen phosphorylase. Mini Rev Med Chem 10:1139–1155

    CAS  PubMed  Google Scholar 

  • Lu Z, Bohn J, Bergeron R, Deng Q, Ellsworth KP, Geissler WM, Harris G, McCann PE, McKeever B, Myers RW, Saperstein R, Willoughby CA, Yao J, Chapman K (2003) A new class of glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 13:4125–4128

    CAS  PubMed  Google Scholar 

  • Madsen NB, Shechosky S, Fletterick RJ (1983) Site-site interactions in glycogen phosphorylase b probed by ligands specific for each site. Biochemistry 22:4460–4465

    CAS  PubMed  Google Scholar 

  • Manta S, Xipnitou A, Kiritsis C, Kantsadi AL, Hayes JM, Skamnaki VT, Lamprakis C, Kontou M, Zoumpoulakis P, Zographos SE, Leonidas DD, Komiotis D (2012) 3′-Axial CH(2) OH substitution on glucopyranose does not increase glycogen phosphorylase inhibitory potency. QM/MM-PBSA calculations suggest why. Chem Biol Drug Des 79:663–673

    CAS  PubMed  Google Scholar 

  • Martin JL, Veluraja K, Ross K, Johnson LN, Fleet GWJ, Ramsden NG, Bruce I, Orchard MG, Oikonomakos NG, Papageorgiou AC, Leonidas DD, Tsitoura HS (1991) Glucose analogue inhibitors of glycogen phosphorylase: the design of potential drugs for diabetes. Biochemistry 30:10101–10116

    CAS  PubMed  Google Scholar 

  • Martin WH, Hoover DJ, Armento SJ, Stock IA, McPherson RK, Danley DE, Stevenson RW, Barrett EJ, Treadway JL (1998) Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci USA 95:1776–1781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Castro E, Gonzalez-Benjumea A, Lopez O, Maya I, Alvarez E, Fernandez-Bolanos JG (2012) Intramolecular cyclization of alkoxyaminosugars: access to novel glycosidase inhibitor families. Org Biomol Chem 10:4220–4228

    CAS  PubMed  Google Scholar 

  • McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 20:519–530

    CAS  PubMed  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  • Minami Y, Kuriyama C, Ikeda K, Kato A, Takebayashi K, Adachi I, Fleet GW, Kettawan A, Okamoto T, Asano N (2008) Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. Bioorg Med Chem 16:2734–2740

    CAS  PubMed  Google Scholar 

  • Murata GH, Duckworth WC, Hoffman RM, Wendel CS, Mohler MJ, Shah JH (2004) Hypoglycemia in type 2 diabetes: a critical review. Biomed Pharmacother 58:551–559

    CAS  PubMed  Google Scholar 

  • Nagy V, Benltifa M, Vidal S, Berzsenyi E, Teilhet C, Czifrak K, Batta G, Docsa T, Gergely P, Somsak L, Praly J-P (2009) Glucose-based spiro-heterocycles as potent inhibitors of glycogen phosphorylase. Bioorg Med Chem 17:5696–5707

    CAS  PubMed  Google Scholar 

  • Nagy V, Felfoldi N, Konya B, Praly JP, Docsa T, Gergely P, Chrysina ED, Tiraidis C, Kosmopoulou MN, Alexacou KM, Konstantakaki M, Leonidas DD, Zographos SE, Oikonomakos NG, Kozmon S, Tvaroska I, Somsak L (2012) N-(4-Substituted-benzoyl)-N′-(β-d-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase: synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods. Bioorg Med Chem 20:1801–1816

    CAS  PubMed  Google Scholar 

  • Nagy L, Docsa T, Szanto M, Brunyanszki A, Hegedus C, Marton J, Konya B, Virag L, Somsak L, Gergely P, Bai P (2013) Glycogen phosphorylase inhibitor N-(3,5-dimethyl-benzoyl)-N′-(β-D-glucopyranosyl)urea improves glucose tolerance under normoglycemic and diabetic conditions and rearranges hepatic metabolism. Plos One 8:e69420

  • Nash RJ, Kato A, Yu CY, Fleet GW (2011) Iminosugars as therapeutic agents: recent advances and promising trends. Fut Med Chem 3:1513–1521

    CAS  Google Scholar 

  • Ogawa AK, Willoughby CA, Bergeron R, Ellsworth KP, Geissler WM, Myers RW, Yao J, Harris G, Chapman KT (2003) Glucose-lowering in a db/db mouse model by dihydropyridine diacid glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 13:3405–3408

    CAS  PubMed  Google Scholar 

  • Oikonomakos NG (2002) Glycogen phosphorylase as a molecular target for type 2 diabetes therapy. Curr Prot Pept Sci 3:561–586

    CAS  Google Scholar 

  • Oikonomakos NG, Somsak L (2008) Advances in glycogen phosphorylase inhibitor design. Curr Opin Investig Drugs 9:379–395

    CAS  PubMed  Google Scholar 

  • Oikonomakos NG, Zographos SE, Johnson LN, Papageorgiou AC, Acharya KR (1995) The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies. J Mol Biol 254:900–917

    CAS  PubMed  Google Scholar 

  • Oikonomakos NG, Schnier JB, Zographos SE, Skamnaki VT, Tsitsanou KE, Johnson LN (2000) Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site. J Biol Chem 275:34566–34573

    CAS  PubMed  Google Scholar 

  • Oikonomakos NG, Kosmopoulou M, Zographos SE, Leonidas DD, Chrysina ED, Somsak L, Nagy V, Praly JP, Docsa T, Toth B, Gergely P (2002a) Binding of N-acetyl-N′-β-d-glucopyranosyl urea and N-benzoyl-N′-β-d-glucopyranosyl urea to glycogen phosphorylase b. Eur J Biochem 269:1684–1696

    CAS  PubMed  Google Scholar 

  • Oikonomakos NG, Zographos SE, Skamnaki VT, Archontis G (2002b) The 1.76 Å resolution crystal structure of glycogen phosphorylase b complexed with glucose, and CP320626, a potential antidiabetic drug. Bioorg Med Chem 10:1313–1319

    CAS  PubMed  Google Scholar 

  • Oikonomakos NG, Kosmopoulou MN, Chrysina ED, Leonidas DD, Kostas ID, Wendt KU, Klabunde T, Defossa E (2005) Crystallographic studies on acyl ureas, a new class of glycogen phosphorylase inhibitors, as potential antidiabetic drugs. Prot Sci 14:1760–1771

    CAS  Google Scholar 

  • Oikonomakos NG, Kosmopoulou MN, Leonidas DD., Chrysina ED, Tiraidis C, Bischler N, Tsitsanou KE, Zographos SE, Kostas ID, Eisenbrand G (2006a) Indirubin and indigo analogues as potential inhibitors of glycogenolysis: structural basis of glycogen phosphorylase inhibition. In: Meijer L, Guyard N, Skaltsounis L, Eisenbrand G (eds) Indirubin, the red shade of indigo. Life in progress editions, Roscoff, France, pp 177–189

  • Oikonomakos NG, Tiraidis C, Leonidas DD, Zographos SE, Kristiansen M, Jessen CU, Norskov-Lauritsen L, Agius L (2006b) Iminosugars as potential inhibitors of glycogenolysis: structural insights into the molecular basis of glycogen phosphorylase inhibition. J Med Chem 49:5687–5701

    CAS  PubMed  Google Scholar 

  • Pan D, Tseng Y, Hopfinger AJ (2003) Quantitative structure-based design: formalism and application of receptor-dependent RD-4D-QSAR analysis to a set of glucose analogue inhibitors of glycogen phosphorylase. J Chem Inf Comput Sci 43:1591–1607

    CAS  PubMed  Google Scholar 

  • Pan DH, Liu JZ, Senese C, Hopfinger AJ, Tseng Y (2004) Characterization of a ligand-receptor binding event using receptor dependent four-dimensional quantitative structure-activity relationship analysis. J Med Chem 47:3075–3088

  • Parmenopoulou V, Kantsadi AL, Tsirkone VG, Chatzileontiadou DSM, Manta S, Zographos SE, Kollatos N, Archontis G, Agius L, Hayes JM, Leonidas DD, Komiotis D (2014) Structure based inhibitor design targeting glycogen phosphorylase b. Virtual screening, synthesis, biochemical and biological assessment of novel N-(β-D-glucopyranosyl) amides (submitted)

  • Paterson I, Anderson EA (2005) Chemistry. The renaissance of natural products as drug candidates. Science 310:451–453

    PubMed  Google Scholar 

  • Pautsch A, Stadler N, Wissdorf O, Langkopf E, Moreth W, Streicher R (2008) Molecular recognition of the protein phosphatase 1 glycogen targeting subunit by glycogen phosphorylase. J Biol Chem 283:8913–8918

    CAS  PubMed  Google Scholar 

  • Pinotsis N, Leonidas DD, Chrysina ED, Oikonomakos NG, Mavridis IM (2003) The binding of β- and γ-cyclodextrins to glycogen phosphorylase b: kinetic and crystallographic studies. Protein Sci 12:1914–1924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polyak M, Varga G, Szilagyi B, Juhasz L, Docsa T, Gergely P, Begum J, Hayes JM, Somsak L (2013) Synthesis, enzyme kinetics and computational evaluation of N-(β-D-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors. Bioorg Med Chem 21:5738–5747

    CAS  PubMed  Google Scholar 

  • Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A, Musacchio A, Roe SM, Pearl L, Leost M, Greengard P, Meijer L (2004) Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47:935–946

    CAS  PubMed  Google Scholar 

  • Praly J-P, Vidal S (2010) Inhibition of glycogen phosphorylase in the context of type 2 diabetes, with focus on recent inhibitors bound at the active site. Mini Rev Med Chem 10:1102–1126

    CAS  PubMed  Google Scholar 

  • Rath VL, Ammirati M, Danley DE, Ekstrom JL, Gibbs EM, Hynes TR, Mathiowetz AM, McPherson RK, Olson TV, Treadway JL, Hoover DJ (2000) Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol 7:677–682

    CAS  PubMed  Google Scholar 

  • Rosauer KG, Ogawa AK, Willoughby CA, Ellsworth KP, Geissler WM, Myers RW, Deng QL, Chapman KT, Harris G, Moller DE (2003) Novel 3,4-dihydroquinolin-2(1H)-one inhibitors of human glycogen phosphorylase a. Bioorg Med Chem Lett 13:4385–4388

    CAS  PubMed  Google Scholar 

  • Skamnaki VT, Kantsadi AL, Chatzileontiadou DSM, Stravodimos G, Leonidas DD (2013) Glycogen metabolism enzymes as molecular targets for drug development. In: Weiss PL, Faulkner BD (eds) Glycogen structure, functions in the body and role in disease. Nova Science Publishers Inc, New York, pp 109–135

    Google Scholar 

  • Socaci C, Hayes JM, Sovantzis D, Hadjiloi T, Mamais M, Lazoura E, Grammatopoulos P, Panagopoulos D, Stathis D, Oikonomakos GN, Zographos SE, Leonidas DD, Oikonomakos NG, Chrysina ED, Gimisis T (2014) Synthesis, X-ray and computational studies of β-D-glucopyranosyl-pyrimidine derivatives as glycogen phosphorylase inhibitors: the role of ligand ionization/tautomeric states (in preparation)

  • Somsak L (2011) Glucose derived inhibitors of glycogen phosphorylase. C R Chim 14:211–223

    CAS  Google Scholar 

  • Somsak L, Kovacs L, Toth M, Osz E, Szilagyi L, Gyorgydeak Z, Dinya Z, Docsa T, Toth B, Gergely P (2001) Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of d-gluco- and d-xylopyranosylidene-spiro-(thio)hydantoins and N-(D-glucopyranosyl) amides. J Med Chem 44:2843–2848

    CAS  PubMed  Google Scholar 

  • Somsak L, Czifrak K, Toth M, Bokor E, Chrysina ED, Alexacou KM, Hayes JM, Tiraidis C, Lazoura E, Leonidas DD, Zographos SE, Oikonomakos NG (2008) New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr Med Chem 15:2933–2983

    CAS  PubMed  Google Scholar 

  • Sprang S, Fletterick R, Stern M, Yang D, Madsen N, Sturtevant J (1982) Analysis of an allosteric binding site: the nucleoside inhibitor site of phosphorylase alpha. Biochem 21:2036–2048

    CAS  Google Scholar 

  • Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural-changes in glycogen-phosphorylase induced by phosphorylation. Nature 336:215–221

    CAS  PubMed  Google Scholar 

  • Sprang SR, Withers SG, Goldsmith EJ, Fletterick RJ, Madsen NB (1991) Structural basis for the activation of glycogen phosphorylase-b by adenosine-monophosphate. Science 254:1367–1371

    CAS  PubMed  Google Scholar 

  • Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55:9470–9478

    CAS  PubMed  Google Scholar 

  • Toth M, Kun S, Bokor E, Benltifa M, Tallec G, Vidal S, Docsa T, Gergely P, Somsak L, Praly J-P (2009) Synthesis and structure-activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase. Bioorg Med Chem 17:4773–4785

    CAS  PubMed  Google Scholar 

  • Treadway JL, Mendys P, Hoover DJ (2001) Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 10:439–454

    CAS  PubMed  Google Scholar 

  • Tsirkone VG, Tsoukala E, Lamprakis C, Manta S, Hayes JM, Skamnaki VT, Drakou C, Zographos SE, Komiotis D, Leonidas DD (2010) 1-(3-Deoxy-3-fluoro-β-D-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: kinetic, crystallographic and modelling studies. Bioorg Med Chem 18:3413–3425

    CAS  PubMed  Google Scholar 

  • Tsitsanou KE, Hayes JM, Keramioti M, Mamais M, Oikonomakos NG, Kato A, Leonidas DD, Zographos SE (2013) Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol. Food Chem Toxicol 61:14–27

    CAS  PubMed  Google Scholar 

  • Wagman AS, Nuss JM (2001) Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 7:417–450

    CAS  PubMed  Google Scholar 

  • Watson KA, Mitchell EP, Johnson LN, Gruciani G, Son JC, Bichard CJF, Fleet GWJ, Oikonomakos NG, Kontou M, Zographos SE (1995) Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection. Acta Crystallogr D51:458–472

    CAS  Google Scholar 

  • Wen X, Zhang P, Liu J, Zhang L, Wu X, Ni P, Sun H (2006) Pentacyclic triterpenes. Part 2: synthesis and biological evaluation of maslinic acid derivatives as glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 16:722–726

    CAS  PubMed  Google Scholar 

  • Wen X, Xia J, Cheng K, Zhang L, Zhang P, Liu J, Ni P, Sun H (2007) Pentacyclic triterpenes. Part 5: synthesis and SAR study of corosolic acid derivatives as inhibitors of glycogen phosphorylases. Bioorg Med Chem Lett 17:5777–5782

    CAS  PubMed  Google Scholar 

  • Wen X, Sun H, Liu J, Cheng K, Zhang P, Zhang L, Hao J, Ni P, Zographos SE, Leonidas DD, Alexacou KM, Gimisis T, Hayes JM, Oikonomakos NG (2008) Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: synthesis, structure-activity relationships, and X-ray crystallographic studies. J Med Chem 51:3540–3554

    CAS  PubMed  Google Scholar 

  • Wen XA, Zhang XY, Liu J, Zhang LY, Ni PZ, Sun HB (2010) Synthesis and biological activity of heterocycle-fused derivatives of pentacylic triterpenes as glycogen phosphorylase inhibitors. J Chin Pharm Univ 40:491–496

    Google Scholar 

  • Whitman M (2001) Understanding the perceived need for complementary and alternative nutraceuticals: lifestyle issues. Clin J Oncol Nurs 5:190–194

    CAS  PubMed  Google Scholar 

  • Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS (2004) Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J Agric Food Chem 52:643–648

    CAS  PubMed  Google Scholar 

  • Zhang P, Hao J, Liu J, Lu Q, Sheng HM, Zhang LY, Sun HB (2009a) Synthesis of 3-deoxypentacyclic triterpene derivatives as inhibitors of glycogen phosphorylase. J Nat Prod 72:1414–1418

    CAS  PubMed  Google Scholar 

  • Zhang LY, Chen J, Gong YC, Liu J, Zhang LY, Hua WY, Sun HB (2009b) Synthesis and biological evaluation of asiatic acid derivatives as inhibitors of glycogen phosphorylase. Chem Biodivers 6:864–874

    PubMed  Google Scholar 

  • Zhang L, Li H, Zhu Q, Liu J, Chen L, Leng Y, Jiang H, Liu H (2009c) Benzamide derivatives as dual-action hypoglycemic agents that inhibit glycogen phosphorylase and activate glucokinase. Biorg Med Chem 17:7301–7312

    CAS  Google Scholar 

  • Zhang L, Chen X, Liu J, Zhu Q, Leng Y, Luo X, Jiang H, Liu H (2012) Discovery of novel dual-action antidiabetic agents that inhibit glycogen phosphorylase and activate glucokinase. Eur J Med Chem 58:624–639

    CAS  PubMed  Google Scholar 

  • Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    CAS  PubMed  Google Scholar 

  • Zographos SE, Oikonomakos NG, Tsitsanou KE, Leonidas DD, Chrysina ED, Skamnaki VT, Bischoff H, Goldmann S, Watson KA, Johnson LN (1997) The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure 5:1413–1425

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.L.K. and D.D.L. would like to acknowledge the support of the “ARISTEIA” Action of the “Operational Programme Education and Lifelong Learning” co-funded by the European Social Fund (ESF) and National Resources. This work was also supported in part by the Postgraduate Programmes ‘‘Biotechnology-Quality assessment in Nutrition and the Environment”, ‘‘Application of Molecular Biology-Molecular Genetics-Molecular Markers”, Department of Biochemistry and Biotechnology, University of Thessaly.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph M. Hayes or Demetres D. Leonidas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, J.M., Kantsadi, A.L. & Leonidas, D.D. Natural products and their derivatives as inhibitors of glycogen phosphorylase: potential treatment for type 2 diabetes. Phytochem Rev 13, 471–498 (2014). https://doi.org/10.1007/s11101-014-9360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9360-6

Keywords

Navigation