Advertisement

Phytochemistry Reviews

, Volume 13, Issue 3, pp 629–642 | Cite as

Phytochemicals for the treatment of inflammatory bowel diseases

  • Mathias Jochen Schneider
  • Heba Abdel-Aziz
  • Thomas Efferth
Article

Abstract

Inflammatory bowel diseases are a widespread problem of unclear aetiology in western as well as eastern societies. Even though there are established therapies to treat inflammatory bowel diseases, the clinical efficacy of these treatments is still not satisfactory. Plant derived compounds demonstrated promising results in pharmacological models of inflammation and few were also evaluated in early clinical trials. Classes of secondary metabolites with anti-inflammatory properties include isoprenoids, stilbenes, flavonoids, and alkaloids as well as structurally related compounds. Most of them affect nuclear factor kappa B activity, modulate enzymes and transcription factors, or reduce cytokine secretion. In addition to evaluating the anti-inflammatory abilities of natural products measured in vivo or in vitro models by immunological and enzymatic assays, some structure–activity-relationship studies were performed in order to find correlations between chemical features and anti-inflammatory activity for further optimization of chemical structures.

Keywords

Colitis Inflammation Medicinal chemistry Crohn's disease Pharmacognosy Phytochemicals 

References

  1. Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT (2013) Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine 20:585–591CrossRefPubMedGoogle Scholar
  2. Ahmad N, Gupta S, Mukhtar H (2000) Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 376:338–346CrossRefPubMedGoogle Scholar
  3. Alcain FJ, Villalba JM (2009) Sirtuin activators. Expert Opin Ther Pat 19:403–414CrossRefPubMedGoogle Scholar
  4. Amasheh M, Schlichter S, Amasheh S, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2008) Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J Nutr 138:1067–1073PubMedGoogle Scholar
  5. Ammon HP (2006) Boswellic acids in chronic inflammatory diseases. Planta Med 72:1100–1116CrossRefPubMedGoogle Scholar
  6. Barberan FA, Manez S, Villar A (1987) Identification of antiinflammatory agents from Sideritis species growing in Spain. J Nat Prod 50:313–314CrossRefPubMedGoogle Scholar
  7. Beekman AC, Woerdenbag HJ, van Uden W, Pras N, Konings AW, Wikstrom HV, Schmidt TJ (1997) Structure-cytotoxicity relationships of some helenanolide-type sesquiterpene lactones. J Nat Prod 60:252–257CrossRefPubMedGoogle Scholar
  8. Biasi F, Astegiano M, Maina M, Leonarduzzi G, Poli G (2011) Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr Med Chem 18:4851–4865CrossRefPubMedGoogle Scholar
  9. Bork PM, Bacher S, Schmitz ML, Kaspers U, Heinrich M (1999) Hypericin as a non-antioxidant inhibitor of NF-kappa B. Planta Med 65:297–300CrossRefPubMedGoogle Scholar
  10. Bremner P, Heinrich M (2002) Natural products as targeted modulators of the nuclear factor-kappaB pathway. J Pharm Pharmacol 54:453–472CrossRefPubMedGoogle Scholar
  11. Calixto JB, Campos MM, Otuki MF, Santos AR (2004) Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103CrossRefPubMedGoogle Scholar
  12. Camacho-Barquero L, Villegas I, Sanchez-Calvo JM, Talero E, Sanchez-Fidalgo S, Motilva V, Alarcon de la Lastra C (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7:333–342CrossRefPubMedGoogle Scholar
  13. Castrillo A, de Las HB, Hortelano S, Rodriguez B, Villar A, Bosca L (2001) Inhibition of the nuclear factor kappa B (NF-kappa B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-kappa B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J Biol Chem 276:15854–15860CrossRefPubMedGoogle Scholar
  14. Chiou YS, Tsai ML, Nagabhushanam K, Wang YJ, Wu CH, Ho CT, Pan MH (2011) Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem 59:2725–2733CrossRefPubMedGoogle Scholar
  15. Claramunt RM, Bouissane L, Cabildo MP, Cornago MP, Elguero J, Radziwon A, Medina C (2009) Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: effect on matrix metalloproteinases. Bioorg Med Chem 17:1290–1296CrossRefPubMedGoogle Scholar
  16. de las Heras B, Navarro A, Diaz-Guerra MJ, Bermejo P, Castrillo A, Bosca L, Villar A (1999) Inhibition of NOS-2 expression in macrophages through the inactivation of NF-kappaB by andalusol. Br J Pharmacol 128:605–612PubMedCentralCrossRefPubMedGoogle Scholar
  17. De Stefano D, Maiuri MC, Simeon V, Grassia G, Soscia A, Cinelli MP, Carnuccio R (2007) Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol 566:192–199CrossRefPubMedGoogle Scholar
  18. Gimenez-Bastida JA, Martinez-Florensa M, Espin JC, Tomas-Barberan FA, Garcia-Conesa MT (2009) A citrus extract containing flavanones represses plasminogen activator inhibitor-1 (PAI-1) expression and regulates multiple inflammatory, tissue repair, and fibrosis genes in human colon fibroblasts. J Agric Food Chem 57:9305–9315CrossRefPubMedGoogle Scholar
  19. Gupta I, Parihar A, Malhotra P, Gupta S, Ludtke R, Safayhi H, Ammon HP (2001) Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med 67:391–395CrossRefPubMedGoogle Scholar
  20. Hanai H, Iida T, Takeuchi K, Watanabe F, Maruyama Y, Andoh A, Tsujikawa T, Fujiyama Y, Mitsuyama K, Sata M, Yamada M, Iwaoka Y, Kanke K, Hiraishi H, Hirayama K, Arai H, Yoshii S, Uchijima M, Nagata T, Koide Y (2006) Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 4:1502–1506CrossRefPubMedGoogle Scholar
  21. Hänsel, Sticher, Steinegger (1999) Pharmakognosie-Phytopharmazie. Springer, GermanyCrossRefGoogle Scholar
  22. Haridas V, Arntzen CJ, Gutterman JU (2001) Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), inhibit activation of nuclear factor-kappaB by inhibiting both its nuclear localization and ability to bind DNA. Proc Natl Acad Sci USA 98:11557–11562PubMedCentralCrossRefPubMedGoogle Scholar
  23. Hehner SP, Hofmann TG, Droge W, Schmitz ML (1999) The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol 163:5617–5623PubMedGoogle Scholar
  24. Holt PR, Katz S, Kirshoff R (2005) Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci 50:2191–2193CrossRefPubMedGoogle Scholar
  25. Hueso-Falcon I, Cuadrado I, Cidre F, Amaro-Luis JM, Ravelo AG, Estevez-Braun A, de Las Heras B, Hortelano S (2011) Synthesis and anti-inflammatory activity of ent-kaurene derivatives. Eur J Med Chem 46:1291–1305CrossRefPubMedGoogle Scholar
  26. Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, Lee JD (2012) Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res 32:801–816CrossRefPubMedGoogle Scholar
  27. Hwang BY, Lee JH, Koo TH, Kim HS, Hong YS, Ro JS, Lee KS, Lee JJ (2001) Kaurane diterpenes from Isodon japonicus inhibit nitric oxide and prostaglandin E2 production and NF-kappaB activation in LPS-stimulated macrophage RAW264.7 cells. Planta Med 67:406–410CrossRefPubMedGoogle Scholar
  28. Kang SS, Cuendet M, Endringer DC, Croy VL, Pezzuto JM, Lipton MA (2009) Synthesis and biological evaluation of a library of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-kappaB. Bioorg Med Chem 17:1044–1054CrossRefPubMedGoogle Scholar
  29. Karrasch T, Kim JS, Jang BI, Jobin C (2007) The flavonoid luteolin worsens chemical-induced colitis in NF-kappaB(EGFP) transgenic mice through blockade of NF-kappaB-dependent protective molecules. PLoS ONE 2:e596PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Hori N, Watanabe T, Takahashi K, Nagawa H (2004) Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b. J Allergy Clin Immunol 113:1211–1217CrossRefPubMedGoogle Scholar
  31. Ko JK, Cho CH (2005) The diverse actions of nicotine and different extracted fractions from tobacco smoke against hapten-induced colitis in rats. Toxicol Sci 87:285–295CrossRefPubMedGoogle Scholar
  32. Kumar S, Ahuja V, Sankar MJ, Kumar A, Moss AC (2012) Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 10: CD008424Google Scholar
  33. Kwon KH, Murakami A, Tanaka T, Ohigashi H (2005) Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochem Pharmacol 69:395–406CrossRefPubMedGoogle Scholar
  34. Kwon HS, Oh SM, Kim JK (2008) Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis. Clin Exp Immunol 151:165–173PubMedCentralCrossRefPubMedGoogle Scholar
  35. Larmonier CB, Midura-Kiela MT, Ramalingam R, Laubitz D, Janikashvili N, Larmonier N, Ghishan FK, Kiela PR (2011) Modulation of neutrophil motility by curcumin: implications for inflammatory bowel disease. Inflamm Bowel Dis 17:503–515PubMedCentralCrossRefPubMedGoogle Scholar
  36. Larsen CA, Dashwood RH (2010) (-)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Arch Biochem Biophys 501:52–57PubMedCentralCrossRefPubMedGoogle Scholar
  37. Lopez-Posadas R, Ballester I, Abadia-Molina AC, Suarez MD, Zarzuelo A, Martinez-Augustin O, Sanchez de Medina F (2008) Effect of flavonoids on rat splenocytes, a structure-activity relationship study. Biochem Pharmacol 76:495–506CrossRefPubMedGoogle Scholar
  38. Lyss G, Schmidt TJ, Merfort I, Pahl HL (1997) Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-kappaB. Biol Chem 378:951–961CrossRefPubMedGoogle Scholar
  39. Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB (1999) Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol 163:6800–6809PubMedGoogle Scholar
  40. Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519CrossRefPubMedGoogle Scholar
  41. Marin M, Giner RM, Rios JL, Recio Mdel C (in press) Protective effect of apocynin in a mouse model of chemically-induced colitis. Planta Med. doi: 10.1055/s-0033-1350710
  42. Martin AR, Villegas I, Sanchez-Hidalgo M, de la Lastra CA (2006) The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br J Pharmacol 147:873–885PubMedCentralCrossRefPubMedGoogle Scholar
  43. Mencarelli A, Renga B, Palladino G, Distrutti E, Fiorucci S (2009) The plant sterol guggulsterone attenuates inflammation and immune dysfunction in murine models of inflammatory bowel disease. Biochem Pharmacol 78:1214–1223CrossRefPubMedGoogle Scholar
  44. Musonda CA, Chipman JK (1998) Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-kappaB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 19:1583–1589CrossRefPubMedGoogle Scholar
  45. Navarro A, de las Heras B, Villar AM (1997) Andalusol, a diterpenoid with anti-inflammatory activity from Siderits foetens Clemen. Z Naturforsch C 52:844–849PubMedGoogle Scholar
  46. Navarro-Peran E, Cabezas-Herrera J, Sanchez-Del-Campo L, Garcia-Canovas F, Rodriguez-Lopez JN (2008) The anti-inflammatory and anti-cancer properties of epigallocatechin-3-gallate are mediated by folate cycle disruption, adenosine release and NF-kappaB suppression. Inflamm Res 57:472–478CrossRefPubMedGoogle Scholar
  47. Ojo-Amaize EA, Kapahi P, Kakkanaiah VN, Takahashi T, Shalom-Barak T, Cottam HB, Adesomoju AA, Nchekwube EJ, Oyemade OA, Karin M, Okogun JI (2001) Hypoestoxide, a novel anti-inflammatory natural diterpene, inhibits the activity of IkappaB kinase. Cell Immunol 209:149–157CrossRefPubMedGoogle Scholar
  48. Orlikova B, Schnekenburger M, Zloh M, Golais F, Diederich M, Tasdemir D (2012) Natural chalcones as dual inhibitors of HDACs and NF-kappaB. Oncol Rep 28:797–805PubMedCentralPubMedGoogle Scholar
  49. Palmen MJHJ, Beukelman CJ, Mooij RGM, Pena AS, van Rees EP (1995) Anti-inflammatory effect of apocynin, a plant-derived NADPH oxidase antagonist, in acute experimental colitis. Neth J Med 47:41Google Scholar
  50. Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60:1665–1676CrossRefPubMedGoogle Scholar
  51. Ruiz PA, Haller D (2006) Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr 136:664–671PubMedGoogle Scholar
  52. Ruiz PA, Braune A, Holzlwimmer G, Quintanilla-Fend L, Haller D (2007) Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr 137:1208–1215PubMedGoogle Scholar
  53. Saliou C, Rihn B, Cillard J, Okamoto T, Packer L (1998) Selective inhibition of NF-kappaB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett 440:8–12CrossRefPubMedGoogle Scholar
  54. Sergent T, Piront N, Meurice J, Toussaint O, Schneider YJ (2010) Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem Biol Interact 188:659–667CrossRefPubMedGoogle Scholar
  55. Singh UP, Singh NP, Singh B, Hofseth LJ, Price RL, Nagarkatti M, Nagarkatti PS (2010) Resveratrol (trans-3,5,4’-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factor-kappaB activation to abrogate dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 332:829–839PubMedCentralCrossRefPubMedGoogle Scholar
  56. Weber WM, Hunsaker LA, Roybal CN, Bobrovnikova-Marjon EV, Abcouwer SF, Royer RE, Deck LM, Vander Jagt DL (2006) Activation of NFkappaB is inhibited by curcumin and related enones. Bioorg Med Chem 14:2450–2461CrossRefPubMedGoogle Scholar
  57. Xu L, Yang ZL, Li P, Zhou YQ (2009) Modulating effect of Hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine 16:989–995CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mathias Jochen Schneider
    • 1
  • Heba Abdel-Aziz
    • 2
  • Thomas Efferth
    • 1
  1. 1.Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
  2. 2.Scientific DepartmentSteigerwald Arzneimittelwerk GmbHDarmstadtGermany

Personalised recommendations