Phytochemistry Reviews

, Volume 12, Issue 4, pp 791–802 | Cite as

Nematicidal potential of Brassicaceae

  • P. Avato
  • T. D’Addabbo
  • P. Leonetti
  • M. P. Argentieri


Brassicaceae Burnett (syn. Cruciferae A. L. de Jussieu) include many important economic plants used as edibile or ornamental. They are commonly known as the “mustard” plant family due to the sharp, potent flavour of their main metabolites, the glucosinolates (GLSs) which contain sulfur. Glucosinolates coexist in vivo with glycosylated thioglucosidases, myrosinase(s), responsible of their hydrolysis with the production of bioactive cognate isothiocyanates (ITC). GLSs and ITCs function as defence bioactive metabolites against plant pathogens, insects and herbivores. The present review paper focus on GLSs role as bionematicides. The current knowledge on the efficacy of these phytochemicals against the most common phytoparasitic nematodes affecting crops of agriculture importance such as tomato, potato and grapevine is reported. Data from our ongoing research on the in vitro biocidal activity of glucosinolate extracts, and their main components, against the virus-vector nematode Xiphinema index Thorne & Allen and the carrot cyst nematode Heterodera carotae Jones are also described.


Brassicaceae Glucosinolates Isothiocyanates Nematodes Globodera rostochiensis Meloidogyne incognita Xiphinema index Heterodera carotae Pratylenchus penetrans 



This manuscript is partially based on a authors’ research work granted by MIUR-Ministero dell’Istruzione, dell’Università e della Ricerca.


  1. Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72:610–623PubMedCrossRefGoogle Scholar
  2. Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58:91–100PubMedCrossRefGoogle Scholar
  3. Agerbirk N, Nielsen M, Ørgaard JK (2003) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80PubMedCrossRefGoogle Scholar
  4. Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8:101–120CrossRefGoogle Scholar
  5. Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1043–1415CrossRefGoogle Scholar
  6. Aires A, Carvalho R, Da Conceição Barbosa M, Rosa E (2009) Suppressing potato cyst nematode, Globodera rostochiensis, with extracts of Brassicacea plants. Am J Pot Res 86:327–333CrossRefGoogle Scholar
  7. Al-Shebaz A, Beilstein MA, Kellog EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Pl Syst Evol 259:89–120CrossRefGoogle Scholar
  8. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  9. Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162:107–112CrossRefGoogle Scholar
  10. Argentieri MP, Avato P (2005) Profilo metabolico e bioattività di Brassicaceae. Informatore Botanico Italiano 37:948–949Google Scholar
  11. Argentieri MP, D’Addabbo T, Colaianna M, Coiro MI, Agostinelli A, De Mastro G, Avato P (2005) Nematicidal bioactivity of natural glucosinolates. In: Abstract of the annual meeting of the society for medicinal plant research, Florence, Italy, 21–25 AugustGoogle Scholar
  12. Argentieri MP, Accogli R, Fanizzi FP, Avato P (2011) Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to Southern Italy (Salento). Planta Med 77:287–292PubMedCrossRefGoogle Scholar
  13. Argentieri MP, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. Ind Crop Prod 36:65–69CrossRefGoogle Scholar
  14. Avato P, D’Addabbo T, Argentieri MP (2006) Bioactivity of glucosinolates on phytoparasitic nematodes. In: Abstracts of the XXII European Colloquium on heterocyclic chemistry, Bari, Italy, 2–6 SeptemberGoogle Scholar
  15. Behrens E (1975) Globodera Skarbilovich, 1959 and independent genus in the subfamily Heteroderinae Skarbilovich, 1949 (Nematode: Heteroderideaea). Vortrangstagung zu Aktuellen Problemen der Phytonematologie 1:12–26Google Scholar
  16. Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007) Glucosinolate profiling of seeds and sprout of B. oleracea varieties used for food. Sci Hortic 114:234–242CrossRefGoogle Scholar
  17. Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJ-A, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochemistry 72:538–556PubMedCrossRefGoogle Scholar
  18. Branca F, Li G, Goyal S, Quiros CF (2002) Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry 59:717–724PubMedCrossRefGoogle Scholar
  19. Brown EB (1969) Assessment of the damage caused to potatoes by potato cyst eelworm Heterodera rostocheinsis Woll. Ann Appl Biol 63:493–502CrossRefGoogle Scholar
  20. Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231CrossRefGoogle Scholar
  21. Brown DJF, Roberston WM, Trudgill DL (1995) Transmission of viruses by plant nematodes. Ann Rev Phytopathol 33:223–249CrossRefGoogle Scholar
  22. Brown AF, Yousef GG, Jeffery EH, Klein BP, Walling MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127:807–813Google Scholar
  23. Buskov S, Serra B, Rosa E, Sørensen H, Sørensen JC (2002) Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis Cv. Woll). J Agr Food Chem 50:690–695CrossRefGoogle Scholar
  24. Cartea ME, Velasco P (2009) Glucosinolates in Brassica foods: biovailability in food and significance for human health. Phytochem Rev 7:213–229CrossRefGoogle Scholar
  25. Chitwood DJ (2002) Phytochemical based strategies for nematode control. Ann Rev Phytopathol 40:221–249CrossRefGoogle Scholar
  26. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agr Food Chem 48:2862–2867CrossRefGoogle Scholar
  27. Colombo A, D’Addabbo T, Cataldi S, Carella A (2006) Suppressive effect of biocidal plant green manures for the control of root-knot nematodes (Meloidogyne spp.) on greenhouse tomato in Sicily: first results. Paper presented at Giornate fitopatologiche 2006, Riccione, Italy, 27–29 MarchGoogle Scholar
  28. Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758PubMedGoogle Scholar
  29. Curto G (2008) Sustainable methods for management of cyst nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Berlin, pp 221–237Google Scholar
  30. D’Addabbo T, Avato P, Agostinelli A, Argentieri MP, De Mastro G (2006a) Sensitivity of Xiphinema index to glucosinolates and breakdown products. In: Abstracts of the 12th congress of the Mediterranean phytopathological union, Rhodes Island, Greece, 11–15 June 2006Google Scholar
  31. D’Addabbo T, Avato P, Sasanelli N, Argentieri MP, Radicci V (2006b) Effects of myrosinase-activated glucoisnolates on the carrot cyst nematode Heterodera carotae Jones. In: Abstracts of the XXVIII international symposium society of nematologists, Blagoevgrad, Bulgaria, 5–9 June 2006Google Scholar
  32. D’Addabbo T, Avato P, Sasanelli N, Agostinelli A, Radicci V (2007) Biocidal activity of glucosinolate on phytoparasitic nematodes. In: Abstracts of the 10th international helminthological symposium—helminths, helmintoses and environment, Stará Lesná, High Tatras, Slovak Republic, 9–14 September, 2007Google Scholar
  33. D’Addabbo T, Avato P, Tava A (2009) Nematicidal potential of materials from Medicago ssp. Eur J Plant Pathol 125:39–49CrossRefGoogle Scholar
  34. D’Addabbo T, Carbonara T, Leonetti P, Radicci V, Tava A, Avato P (2011) Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochem Rev 10:503–519CrossRefGoogle Scholar
  35. D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxix and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199PubMedCrossRefGoogle Scholar
  36. Daxenbichler ME, VanEtten CH, Williams PH (1979) Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. J Agr Food Chem 27:34–37CrossRefGoogle Scholar
  37. Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638CrossRefGoogle Scholar
  38. Duke SO (1990) Natural pesticides from plants. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, OR, pp 511–517Google Scholar
  39. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51PubMedCrossRefGoogle Scholar
  40. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Cri Rev Food Sci Nut 18:123–201CrossRefGoogle Scholar
  41. Fimognari C, Hrelia P (2007) Sulphoraphane as a promising molecule for fighting cancer. Mut Res 636:90–104Google Scholar
  42. Gimsing AL, Kirkegaard JA (2009) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev 8:299–310CrossRefGoogle Scholar
  43. Gofmann FD, Becker HC (2002) Genetic variation of tochoferol content in a germplasm collection of Brassica napus L. Euphytica 125:189–191CrossRefGoogle Scholar
  44. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Brit J Nut 90:487–502CrossRefGoogle Scholar
  45. Greco N, D’Addabbo T, Brandonisio A, Elia F (1993) Damage to Italian crops caused by cyst-forming nematodes. J Nematol 25(4):836–842PubMedGoogle Scholar
  46. Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry, and dietary effects. J Hort Sci Biotechnol 73:1–18Google Scholar
  47. Hashem FA, Motawea H, El-Shabrawy AE, Shaker K, El-Sherbini S (2012) Myrosinase hydrolysates of Brassica oleraceae L. var italica reduce the risk of colon cancer. Phytother Res 26:743–747PubMedCrossRefGoogle Scholar
  48. Herr I, Buchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383PubMedCrossRefGoogle Scholar
  49. Ibrahim KE, Juvik JA (2009) Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 57:4636–4644PubMedCrossRefGoogle Scholar
  50. Johnson IT (2002a) Anticarcinogenic effects of diet-related apoptosis in the colorectal mucosa. Food Chem Toxicol 40:1171–1178PubMedCrossRefGoogle Scholar
  51. Johnson IT (2002b) Glucosinolates in the human diet. Bioavailability and implications for health. Phytochem Rev 1:183–188CrossRefGoogle Scholar
  52. Judd WS, Campbell CS, Kellogg EA, Stevens PF (2008) Plant systematics—a phylogenetic approach. Sinauer Ass., Inc., MassachussetsGoogle Scholar
  53. Kabouw P, Biere A, van der Putten WH, van Dam NM (2010a) Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J Agric Food Chem 58:411–417PubMedCrossRefGoogle Scholar
  54. Kabouw P, van der Putten WH, van Dam NM, Biere A (2010b) Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518CrossRefGoogle Scholar
  55. Kirkegaard JA, Sarwar M (1998) Biofumigation potential of brassicas. I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201:71–89CrossRefGoogle Scholar
  56. Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86CrossRefGoogle Scholar
  57. Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142CrossRefGoogle Scholar
  58. Lamberti F, Taylor CE (eds) (1979) Root-knot nematodes (Meloydogine species): systematics, biology and control. Academic Press, New YorkGoogle Scholar
  59. Latté KP, Appel K-E, Lampen A (2011) Health benefits and possible risks of broccoli—an overview. Food Chem Toxicol 49:3287–3309PubMedCrossRefGoogle Scholar
  60. Lazzeri L, Leoni O, Manici LM (2004) Biocidal plant dried pellets for biofumigation. Ind Crop Prod 20:59–65CrossRefGoogle Scholar
  61. Lazzeri L, Curto G, Dallavalle E, D’Avino L, Malaguti L, Santi R, Patalano G (2009) Nematicidal efficacy of biofumigation by defatted Brassicaceae meal for control of Meloidogyne incognita (Kofoid et White) Chitw. on a full field zucchini crop. J Sustain Agric 33:349–358CrossRefGoogle Scholar
  62. Mandal S, Yadav S, Singh R, Begum G, Suneja P, Singh M (2002) Correlation studies on oil content and fatty acid profile of some Cruciferous species. Genet Resour Crop Ev 49:551–556CrossRefGoogle Scholar
  63. Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S (2000) Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag Sci 56:921–926CrossRefGoogle Scholar
  64. Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265CrossRefGoogle Scholar
  65. Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103CrossRefGoogle Scholar
  66. Mithen R, Bennet R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074–2086PubMedCrossRefGoogle Scholar
  67. Mojtahedi H, Santo GS, Hang AN, Wilson JH (1991) Suppression of root-knot nematodes with selected rapeseed cultivars as green manures. J Nematol 23:170–174PubMedGoogle Scholar
  68. Mojtahedi H, Santo GS, Wilson JH, Hang AN (1993) Managing Meloydogine chitwoodi on potato with rapeseed as green manure. Plant Dis 74:42–46CrossRefGoogle Scholar
  69. Monfort WS, Csinos AS, Desaeger J, Seebold K, Webster TM, Diaz-Perez JC (2007) Evaluating Brassica species as an alternative control measure for root-knot nematode (M. incognita) in Georgia vegetable plasticulture. Crop Prot 26:1359–1368CrossRefGoogle Scholar
  70. Nabloussi A, Marquez-Lema A, Fernandez-Martinez JM, Velasco L (2008) Novel seed oil types of Ethiopian mustard with high levels of polyunsaturated fatty acids. Ind Crop Prod 27:359–363CrossRefGoogle Scholar
  71. Nho CW, Jeffery E (2001) The synergistic upregulation of phase II detoxification enzymes by glucosinolates breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol 174:146–152PubMedCrossRefGoogle Scholar
  72. Nho CW, Jeffery E (2004) Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinole. Toxicol Appl Pharmacol 198:40–48PubMedCrossRefGoogle Scholar
  73. Ntalli NG, Caboni P (2012) Botanical nematicides: a review. JAFC 60:9929–9940CrossRefGoogle Scholar
  74. Ntalli NG, Menkissoglu-Spiroudi U (2011) Pesticides of botanical origin: a promising tool in plant protection. In: Stoytcheva M (ed) Pesticides—formulations, effects, fate. InTech Europe, pp 3–24Google Scholar
  75. Oliveira RDL, Dhingra OD, Lima AO, Jham GN, Berhow MA, Holloway RK, Vaughn SF (2011) Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant Soil 341:155–164CrossRefGoogle Scholar
  76. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on glucosinolates as undesirable substances in animal feed (2008) EFSA J 590:1–76Google Scholar
  77. Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545PubMedCrossRefGoogle Scholar
  78. Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24:67–80CrossRefGoogle Scholar
  79. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215Google Scholar
  80. Sarwar M, Kirkegaard JA (1998) Biofumigation potential of brassicas. II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil 201:91–101CrossRefGoogle Scholar
  81. Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas. III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103–112CrossRefGoogle Scholar
  82. Schmidt R, Bancroft J (2011) Genetics and genomics of the Brassicaceae. Springer, GermanyGoogle Scholar
  83. Smolinska U, Morra MJ, Knudsen GR, Brown PD (1997) Toxicity of glucosinolate degradation products from Brassica napus seed meal towards Aphanomyces euteiches f. sp. pisi. Phytopathol 87:77–82CrossRefGoogle Scholar
  84. Soengas P, Sotelo T, Velasco P, Cartea ME (2011) Antioxidants properties of Brassica vegetables. In: Teixeira da Silva J (ed) Functional plant science and biotechnology, vol 5(Special Issue 2). Global Science Books, pp 43–55Google Scholar
  85. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290PubMedCrossRefGoogle Scholar
  86. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282CrossRefGoogle Scholar
  87. Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245CrossRefGoogle Scholar
  88. Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol 132:1–27CrossRefGoogle Scholar
  89. Van Dam NM, Tytgat TOG, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8:171–186CrossRefGoogle Scholar
  90. VanEtten CH, Daxenbicher ME, Wolff IA (1969) Natural glucosinolates (thioglucosides) in food and feed. J Agric Food Chem 17:483–491CrossRefGoogle Scholar
  91. Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crop Prod 21:193–202CrossRefGoogle Scholar
  92. Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Gen Res Crop Evol 47:231–238CrossRefGoogle Scholar
  93. Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates—a review. Food Sci Technol 42:1561–1572Google Scholar
  94. Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135–142PubMedCrossRefGoogle Scholar
  95. Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, Berlin, pp 33–65Google Scholar
  96. Wu H, Wang C-J, Bian X-W, Zeng S-Y, Lin K-C, Wu B, Zhang G-A, Zhang X (2011) Nematicidal efficacy of isothiocynates against root-knot nematode Meloidogyne javanica cucumber. Crop Prot 30:33–37CrossRefGoogle Scholar
  97. Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352PubMedCrossRefGoogle Scholar
  98. Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57:1079–1089CrossRefGoogle Scholar
  99. Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:1017–1024CrossRefGoogle Scholar
  100. Zasada IA, Meyer SLF, Morra MJ (2009) Brassicaceous seed meals as soil amendments to suppress the plant-parasitic nematodes Pratylenchus penetrans and Meloydogine incognita. J Nematol 41:221–227PubMedGoogle Scholar
  101. Zasada Z, Weiland JE, Reed RL, Stevens JF (2012) Activity of meadowfoam (Limnanthes alba) deed meal glucolimnanthin degradation products against soilborne pathogens. J Agric Food Chem 60:339–345PubMedCrossRefGoogle Scholar
  102. Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P. Avato
    • 1
  • T. D’Addabbo
    • 2
  • P. Leonetti
    • 2
  • M. P. Argentieri
    • 1
  1. 1.Dipartimento di Farmacia - Scienze del FarmacoUniversitá di Bari Aldo MoroBariItaly
  2. 2.Istituto per la Protezione delle Piante, CNRBariItaly

Personalised recommendations