Skip to main content
Log in

Secondary metabolites during early development in plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Early development is a critical stage in a plant’s life, as the plant must establish itself in the ecosystem during this period. The secondary metabolites (SM) during this phase is a strategy that contributes to the survival of plant species. Through a review of the literature, a number of reports were found that investigated the presence of SM during germination and early plant development (phases 0 and 1 according to the Zadoks and BBCH scales). A total of 250 reports were found that investigated 99 species and nearly 200 SM that accumulate during this period of the plant life cycle. A large portion of the SM are biosynthesised de novo, whereas the remainder are derived in part or in total from the mother plant. In many cases, the resources for biosynthesis are supplied only by the reserve material of the endosperm or cotyledons, which allows for independent photosynthesis. The presence of SM at these stages confers characteristics of more advanced stages, such as tissue-specific distribution, spatio-temporal regulation, and the individual regulation of all of the biosynthesised SM. The amount and diversity of SM are not universally related to the progress of plant development, but it is a widespread phenomenon. The early production of SM has ecological implications that involve defence mechanisms, relationships with microorganisms, and the role of these compounds as nitrogen reserves. This review contributes to the systematisation of studies on SM in the early stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aasen AJ, Culvenor CCJ, Finnie EP, Kellock AW, Smith LW (1969) Alkaloids as a possible cause of ryegrass staggers in grazing livestock. Aust J Agric Res 20:71–86

    Article  CAS  Google Scholar 

  • Abdel-Hady MS, Okasha EM, Soliman SSA, Talaat M (2008) Effect of gamma radiation and gibberellic acid on germination and alkaloid production in Atropa belladonna l. Aust J Basic Appl Sci 2(3):401–405

    CAS  Google Scholar 

  • Abdelrahaman SM, Elmaki HB, Idris WH, Hassan AB, Babiker EE, El Tinay AH (2007) Antinutritional factor content and hydrochloric acid extractability of minerals in pearl millet cultivars as affected by germination. Int J Food Sci Nutr 58:6–17

    Article  PubMed  CAS  Google Scholar 

  • Aerts RJ, Baumann TW (1994) Distribution and utilization of chlorogenic acid in Coffea seedlings. J Exp Bot 45:497–503

    Article  CAS  Google Scholar 

  • Aerts RJ, Van der Leer T, Van der Heijden R, Verpoorte R (1990) Developmental regulation of alkaloid production in Cinchona seedlings. J Plant Physiol 136:86–91

    Article  CAS  Google Scholar 

  • Aerts RJ, Snoeijer W, Aerts-Teerlink O, van der Meijden E, Verpoorte R (1991) Control and biological implications of alkaloid synthesis in ssssCinchona seedlings. Phytochemistry 30:3571–3577

    Article  CAS  Google Scholar 

  • Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    Article  CAS  Google Scholar 

  • Aerts RJ, Schäfer A, Hesse M, Baumann T, Slusarenko A (1996) Signalling molecules and the synthesis of alkaloids in Catharanthus roseus seedlings. Phytochemistry 42:417–422

    Article  CAS  Google Scholar 

  • Åhman I, Tuvesson S, Johansson M (2000) Does indole alkaloid gramine confer resistance in barley to aphid Rhopalosiphum padi? J Chem Ecol 26:233–255

    Article  Google Scholar 

  • Andarwulan N, Fardiaz D, Wattimena GA, Shetty K (1999) Antioxidant activity associated with lipid and phenolic mobilization during seed germination of Pangium edule Reinw. J Agric Food Chem 47:3158–3163

    Article  PubMed  CAS  Google Scholar 

  • Argandoña VH, Luza JG, Niemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668

    Article  Google Scholar 

  • Argandoña VH, Niemeyer HM, Corcuera LJ (1981) Effect of content and distribution of hydroxamic acids in wheat on infestation by Schizaphis graminum. Phytochemistry 20:673–676

    Article  Google Scholar 

  • Ashihara H (2006) Metabolism of alkaloids in coffee plants. Braz J Plant Physiol 18:1–8

    Article  CAS  Google Scholar 

  • Assabgui RA, Hamilton RI, Arnason JT (1995) Hydroxamic acid content and plant development of maize (Zea mays L.) in relation to damage by the western corn rootworm, Diabrotica virgifera virgifera LeConte. Can J Plant Sci 75:851–856

    Article  CAS  Google Scholar 

  • Baisted DJ (1971) Sterol and triterpene synthesis in the developing and germinating pea Seed. Biochem J 124:375–383

    PubMed  CAS  Google Scholar 

  • Baldisserotto C, Ferroni L, Anfuso E, Pagnoni A, Fasulo MP, Pancaldi S (2007) Responses of Trapa natans L. floating laminae to high concentrations of manganese. Protoplasma 231:65–82

    Article  PubMed  CAS  Google Scholar 

  • Balsevich J, Hogge LR, Berry AJ, Games DE, Mylchreest IC (1988) Analysis of indole alkaloids from leaves of Catharanthus roseus by means of supercritical fluid chromatography/mass spectrometry. J Nat Prod 51:1173–1177

    Article  CAS  Google Scholar 

  • Bartolomé B, Estrella I, Hernández T (1997) Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Z Lebensm Unters Forsch A 205:290–294

    Article  Google Scholar 

  • Barton KE (2007) Early ontogenetic patterns in chemical defense in plantago (plantaginaceae): genetic variation and trade-offs. Am J Bot 94(1):56–66

    Article  PubMed  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds, ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Baumann TW (2006) Some thoughts on the physiology of caffeine in coffee—and a glimpse of metabolite profiling. Braz J Plant Physiol 18(1):243–251

    Article  CAS  Google Scholar 

  • Baumann TW, Gabriel H (1984) Metabolism and excretion of caffeine during germination of Coffea arabica L. Plant Cell Physiol 25:1431–1436

    CAS  Google Scholar 

  • Bednarek P, Frański R, Kerhoas L, Einhorn J, Wojtaszek P, Stobiecki M (2001) Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Phytochemistry 56:77–85

    Article  PubMed  CAS  Google Scholar 

  • Bekkara F, Jay M, Viricel MR, Rome S (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203:27–36

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds. Physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Bhattacharyya MK, Ward EWB (1985) Differential sensitivity of Phytophthora megasperma f. sp. glycinea to glyceollin isomers. Physiol Plant Pathol 27:299–310

    Article  CAS  Google Scholar 

  • Bohidar K, Wratten SD, Niemeyer HM (1986) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann App Biol 109:193–198

    Article  CAS  Google Scholar 

  • Bonzom MP, Gargadennec A, Andary C, Roussel JL, Gueiffier A (1998) Alkaloid repartition and DMSO effects on alkaloid accumulation in Catharanthus seedlings. J Plant Physiol 153:534–538

    Article  CAS  Google Scholar 

  • Bove J, Jullien M, Grappin P (2001) Functional genomics in the study of seed germination. Gen Biol 3(1):1002.1–1002.5

    Article  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene LC and C1. Plant Cell 14:2509–2526

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Bewley JD (2002) Seeds: Biology, technology and role in agriculture. In: Chrispeels MJ, Sadava DE (eds) Plants, genes and crop biotechnology, 2nd edn. Jones and Bartlett, Boston, pp 210–239

    Google Scholar 

  • Bradford K, Nonogaki H (2007) Seed development, dormancy, and germination. Annual Plant Reviews Blackwell Publishing Ltd, India

    Book  Google Scholar 

  • Bush PB, Grunwald C (1972) Sterol changes during germination of Nicotiana tabacum seeds. Plant Physiol 50:69–72

    Article  PubMed  CAS  Google Scholar 

  • Ceballos L, Hossaert-McKey M, McKey D, Andary C (1998) Rapid deployment of allelochemicals in exudates of germinating seeds of Sesbania (Fabaceae): roles of seed anatomy and histolocalization of polyphenolic compounds in anti-pathogen defense of seedlings. Chemoecology 8:141–151

    Article  CAS  Google Scholar 

  • Cho Y, Turnipseed EB, Lightfoot DA, Wood AJ (2008) Trigonelline in mature seeds and developing seedlings of Glycine max. Biol Plantarum 52:370–372

    Article  CAS  Google Scholar 

  • Choi I, Seog H, Park Y, Kim Y, Choi H (2007) Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet. Phytomedicine 14:563–567

    Article  PubMed  CAS  Google Scholar 

  • Collantes HG, Gianoli E, Niemeyer HM (1998) Changes in growth and chemical defences upon defoliation in maize. Phytochemistry 49:1921–1923

    Article  CAS  Google Scholar 

  • Davis CS, Ni X, Quisenberry SS, Foster JE (2000) Identification and quantification of hydroxamic acids in maize seedling root tissue and impact on western corn rootworm (Coleoptera: Chrysomelidae) larval development. J Econ Entomol 93:989–992

    Article  PubMed  CAS  Google Scholar 

  • De Cortes Sánchez M, Altares P, Pedrosa MM, Burbano C, Cuadrado C, Goyoaga C, Muzquiz M, Jiménez-Martínez C, Dávila-Ortiz G (2005) Alkaloid variation during germination in different lupin species. Food Chem 90:347–355

    Article  CAS  Google Scholar 

  • De la Cruz Chacón I, González-Esquinca AR (2012) Liriodenine alkaloid in Annona diversifolia during early development. Nat Prod Res 26:42–49

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz-Chacón I, González-Esquinca AR, Guevara Fefer P, Jímenez García LF (2011) Liriodenine, early antimicrobial defence in Annona diversifolia. Z Naturforsch C 66:377–384

    Article  PubMed  Google Scholar 

  • De la Cuadra C, Muzquiz CM, Burbano C, Ayet G, Calvo R, Osagie A, Cuadrado C (1994) Alkaloid, α-galactoside and phytic acid changes in germinating lupin seeds. J Sci Food Agric 66:357–364

    Article  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WGW (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Article  Google Scholar 

  • Devi MC, Reddy MN (2002) Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 37:151–156

    Article  Google Scholar 

  • Díaz J, Barceló AR, De Cáceres FM (1997) Changes in shikimate dehydrogenase and the end products of the shikimate pathway, chlorogenic acid and lignins, during the early development of seedlings of Capsicum annuum. New Phytol 136:183–188

    Article  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32:479–501

    Article  CAS  Google Scholar 

  • Dubeck M, Kirkwood S (1952) The origin of the O- and N-methyl groups of the alkaloid ricinine. J Biol Chem 199:307–312

    PubMed  CAS  Google Scholar 

  • Duke SO, Naylor AW (1976) Light control of anthocyanin biosynthesis in Zea seedlings. Physiol Plantarum 37:62–68

    Article  CAS  Google Scholar 

  • Dumortier FM, Vendrig JC (1982a) Anthocyanin synthesis in seedlings of Vigna radiata (L.) Wilczek: interaction between hypocotyl and cotyledons. Plant Cell Physiol 23:759–765

    CAS  Google Scholar 

  • Dumortier FM, Vendrig JC (1982b) The role of phytochrome in anthocyanin synthesis in seedlings of Vigna radiata (L.) Wilczek. Plant Cell Physiol 23:923–927

    CAS  Google Scholar 

  • Ehmann B, Ocker B, Schäfer E (1991) Development and light-dependent regulation of the expression of two different chalcone synthase transcripts in mustard cotyledons. Planta 183:416–422

    Article  CAS  Google Scholar 

  • El-Araby MM, Moustafa SMA, Ismail AI, Hegazi AZA (2006) Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein patterns and anatomical seed features. Acta Agron Hung 54:441–457

    Article  CAS  Google Scholar 

  • Evans LS, Tramontano WA (1984) Trigonelline and promotion of cell arrest in G2 of various legumes. In: Bioregulators, ACS Symposium series 257:75–82

  • Evans LS, Almeida MS, Lynn DG, Nakanishi K (1979) Chemical characterization of a hormone that promotes cell arrest in G2 in complex tissues. Science 203:1122–1123

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Penzes C, Johnson AG, Bull D (1996) Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol 112:1669–1677

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Friedman J, Waller GR (1983) Caffeine hazards and their prevention in germination seeds of coffee (Coffea arabica L.). J Chem Ecol 9:1099–1106

    Article  CAS  Google Scholar 

  • Gianoli E, Niemeyer HM (1997) Environmental effects on the accumulation of hydroxamic acids in wheat seedlings: the importance of plant growth rate. J Chem Ecol 23:543–551

    Article  CAS  Google Scholar 

  • Graham TL (1991) Flavonoid and Isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95:594–603

    Article  PubMed  CAS  Google Scholar 

  • Graham TL, Kim JE, Graham MY (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol Plant Microbe Interact 3:157–166

    Article  CAS  Google Scholar 

  • Green TR, Baisted DJ (1971) Development of the squalene-synthesizing system during early stages of pea seed germination. Biochem J 125:1145–1147

    PubMed  CAS  Google Scholar 

  • Gregianini TS, Porto DG, Do Nascimiento NC, Fett JP, Henriques AT, Fett Netto AG (2004) Environmental and ontogenetic control of accumulation of brachycerine, a bioactive indole akaloid from Psychotria brachycera. J Chem Ecol 30:2023–2036

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Wang MH (2010) Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regul 62:1–8

    Article  CAS  Google Scholar 

  • Guo X, Yang L, Yu JH, Tang ZH, Zu YG (2007) Alkaloid variations in Catharanthus roseus seedlings treated by different temperatures in short term and long term. J For Res 18:313–315

    Article  CAS  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T (2008) The lost origin of chemical ecology in the late 19th century. PNAS 105:4541–4546

    Article  PubMed  CAS  Google Scholar 

  • Hartwig UE, Joseph CM, Phillips DA (1991) Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol 95:797–803

    Article  PubMed  CAS  Google Scholar 

  • Hess M, Barralis G, Bleiholder H, Buhr L, Eggers Th, Hack H, Stauss R (1997) Use of the extended BBCH scale-general for the descriptions of the growth stages of mono and dicotyledonous weed species. Weed Res 37:433–441

    Article  Google Scholar 

  • Huang LD, Backhouse D (2005) Induction of defence responses in roots and mesocotyls of sorghum seedlings by inoculation with Fusarium thapsinum and F. proliferatum, wounding and light. J Phytopathol 153:522–529

    Article  Google Scholar 

  • Huang FC, Kutchan TM (2000) Distribution of morphinan and benzo(c)phenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry 53:555–564

    Article  PubMed  CAS  Google Scholar 

  • Hunter RE, Halloin JM, Veech JA, Carter WW (1978) Terpenoid accumulation in hypocotyls of cotton seedlings during aging and after infection by Rhizoctonia solani. Phytopathology 68:347–350

    Article  CAS  Google Scholar 

  • Huub L, Kerckhoffs J, Kendrick RE (1997) Photocontrol of anthocyanin biosynthesis in tomato. J Plant Res 110:141–149

    Article  Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park YI (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1514–1531

    Article  PubMed  CAS  Google Scholar 

  • Jurado E, Moles A (2003) Germination deferment strategies. In: Nicolás G, Bradford KJ, Côme D, Pritchard HW (eds) The biology of seeds: recent research advances: proceedings of the Seventh International Workshop on Seeds, Salamanca, pp 381-388

  • Justus M, Witte L, Hartmann T (1997) Levels and tissue distribution of loline alkaloids in endophyte-infected Festuca pratensis. Phytochemistry 44:51–57

    Article  CAS  Google Scholar 

  • Katagiri Y, Hashidoko Y, Tahara S (2002) Localization of flavonoids in the yellow lupin seedlings and their UV-B-absorbing potential. Z Naturforsch C 57:811–816

    PubMed  CAS  Google Scholar 

  • Kemp RJ, Goad LJ, Mercer EI (1967) Changes in the levels and composition of the esterified and unesterified sterols of maize seedlings during germination. Phytochemistry 6(12):1609–1615

    Article  CAS  Google Scholar 

  • Keski-Saari S, Julkunen-Tiitto R (2003) Early developmental responses of mountain birch (Betula pubescens subsp. czerepanovii) seedlings to different concentrations of phosphorus. Tree Physiol 23:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Keski-Saari S, Flack M, Heinonen J, Zon J, Julkunen-Tiitto R (2007) Pheno-lics during early development of Betula pubescens seedlings: inhibition of phenylalanine ammonia lyase. Trees Struct Funct 21:263–272

    Article  CAS  Google Scholar 

  • Khogali A, Barakat S, Abou-Zeid H (1993) Effect of various light treatments on the accumulation of flavonoids and anthocyanins during germination of Ricinus communis L. Alex J Agric Res 38:373–386

    Google Scholar 

  • Kim SL, Kim SK, Park CH (2004) Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res Int 37(4):319–327

    Article  CAS  Google Scholar 

  • Klun JA, Robinson JF (1969) Concentration of two 1, 4-Benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the european corn borer. J Econ Entomol 62:214–220

    CAS  Google Scholar 

  • Koller D, Mayer AM, Poljakoff-Mayber A, Klein S (1962) Seed germination. Annu Rev Plant Physiol 13:437–464

    Article  CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  • Kubasek WL, Shirley WB, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    PubMed  CAS  Google Scholar 

  • Kubasek WL, Ausubel FM, Shirley BW (1998) A light independent developmental mechanism potentiates flavonoid gene expression in Arabidopsis seedlings. Plant Mol Biol 37:217–223

    Article  PubMed  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Leete E (1975) Biosynthesis and metabolism of gramine in Lupinus hartwegii. Phytochemistry 14:471–474

    Article  CAS  Google Scholar 

  • Leete E, Marion L (1954) The biogenesis of alkaloids. X. The origin of the N-methyl groups of the alkaloids of barley. Can J Chem 32:646–649

    Article  CAS  Google Scholar 

  • Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270

    Article  PubMed  CAS  Google Scholar 

  • Liu DL, Lovett JV (1993) Biologically active secondary metabolites of barley II. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244

    Article  CAS  Google Scholar 

  • López-Amorós ML, Hernández T, Estrella I (2006) Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Comp Anal 19:277–283

    Article  CAS  Google Scholar 

  • López-Meyer M, Nessler CL (1997) Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. The Plant J 11:1167–1175

    Article  Google Scholar 

  • Lozovaya VV, Lygin AV, Li S, Hartman GL, Widholm JM (2004) Biochemical Response of Soybean Roots to Fusarium solani f. sp. Glycines. Infection Crop Sci 44:819–826

    Article  CAS  Google Scholar 

  • Lu J, Zhao H, Chen J, Fan W, Dong J, Kong W, Sun J, Cao Y, Cai G (2007) Evolution of phenolic compounds and antioxidant activity during aalting. J Agric Food Chem 55:10994–11001

    Article  PubMed  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Anaya AL (2008) Production of allelopathic glycosidic resins in seeds and early development stages of Ipomoea tricolor L. (Convolvulaceae). Allelopathy J 21:107–118

    Google Scholar 

  • Magnotta M, Murata J, Chen J, De Luca V (2006) Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling. Phytochemistry 67:1758–1764

    Article  PubMed  CAS  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  PubMed  CAS  Google Scholar 

  • Mann JD, Steinhart CE, Mudd HS (1963) Alkaloids and plant metabolism V. The distribution and formation of tyramine methylpherase during germination of barley. J Biol Chem 238:676–681

    CAS  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol 128:472–481

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Kikuta Y, Haba A, Nakayama K, Katsuda Y, Hatanaka A, Komai K (2005) Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Phytochemistry 66:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Matsuo H, Taniguchi K, Hiramoto T, Yamada T, Ichinose Y, Toyoda K, Takeda K, Shiraishi T (2001) Gramine increase associated with rapid and transient systemic resistance in barley seedlings induced by mechanical and biological stresses. Plant Cell Physiol 42:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) Chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91:842–847

    Article  PubMed  CAS  Google Scholar 

  • Mcarthur C, Loney PE, Davies NW, Jordan GJ (2010) Early ontogenetic trajectories vary among defence chemicals in seedlings of a fast-growing eucalypt. Austral Ecol 35:157–166

    Article  Google Scholar 

  • McCall PJ, Turlings TCJ, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J Chem Ecol 20:3039–3050

    Article  CAS  Google Scholar 

  • Milkowski C, Strack D (2010) Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232:19–35

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  PubMed  CAS  Google Scholar 

  • Minorsky PV (2002) Trigonelline: a diverse regulator in plants. Plant Physiol 128:7–8

    Article  CAS  Google Scholar 

  • Miranda-Ham ML, Islas-Flores I, Vazquez-Flota F (2007) Accumulation of monoterpenoid indole alkaloids in periwinkle seedlings (Catharanthus roseus) as a model for the study of plant-environment Interactions. Biochem Mol Biol Educ 35:206–210

    Article  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2001) Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiol Mol Plant P 58:31–41

    Article  CAS  Google Scholar 

  • Morris PF, Savard ME, Ward EWB (1991) Identification and accumulation of isoflavonoids and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophthora megasperma f sp glycinea. Physiol Mol Plant Pathol 39:229–244

    Article  CAS  Google Scholar 

  • Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  PubMed  CAS  Google Scholar 

  • Narukawa M, Kanbara K, Tominaga Y, Aitani Y, Fukuda K, Kodama T, Murayama N, Nara Y, Arai T, Konno M, Kamisuki S, Sugawara F, Iwai M, Inoue Y (2009) Chlorogenic acid facilitates root hair formation in lettuce seedlings. Plant Cell Physiol 50:504–514

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RL, Kollipara SS, Vincent JR, Lyons PC, Cadena-Gomez G (1987) Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc Natl Acad Sci Usa 84:5520–5524

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27:3349–3358

    Article  CAS  Google Scholar 

  • Niemeyer HM, Pesel E, Copaja SV, Bravo HR, Franke S, Francke W (1989a) Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 28:447–449

    Article  CAS  Google Scholar 

  • Niemeyer HM, Pesel E, Franke S, Francke W (1989b) Ingestion of the benzoxazinone DIMBOA from wheat plants by aphids. Phytochemistry 28:2307–2310

    Article  CAS  Google Scholar 

  • Nonogaki H (2010) MicroRNA gene regulation cascades during early stages of plant development. Plant Cell Physiol 51:1840–1846

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki H, Chen F, Bradford KJ (2007) Mechanisms and genes involved in germination sensu stricto. In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination. Annu Plant Rev 27:264–304

  • Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci Usa 103:10116–10121

    Article  PubMed  CAS  Google Scholar 

  • Opitz S, Kunert G, Gershenzon J (2008) Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J Chem Ecol 34:508–522

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    Article  PubMed  CAS  Google Scholar 

  • Petri G (1982) Biosynthesis of tropane alkaloids: the influence of precursors to intact plants and tissue culturs. Acta Hortic (ISHS) 306:71–82

    Google Scholar 

  • Poulin MJ, Bel-Rhlid R, Piché Y, Chênevert R, Poulin MJ (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 19:2317–2327

    Article  CAS  Google Scholar 

  • Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E (2010) The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant 3(1):78–90

    Article  PubMed  CAS  Google Scholar 

  • Pourcel L, Bohórquez-Restrepo A, Irani NG, Grotewold E (2012) Anthocyanin biosynthesis, regulation, and transport: new insights from model species. In: Cheynier V, Sarni-Manchado P, Quideau S (eds) Recent advances in polyphenol research, vol 3. Wiley-Blackwell, Oxford, pp 143–161

    Chapter  Google Scholar 

  • Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna V, Jhansi Rani P, Ramakrishna Rao P (2006) Anti-nutritional factors during germination in Indian bean (Dolichos lablab L.) seeds. World J Dairy Food Sci 1:06–11

    Google Scholar 

  • Rengel Z, Kordan HA (1988) Photosensitivity of anthocyanin production in dark-grown and light-pretreated Zea mays seedlings. Can J Bot 66:1021–1027

    Article  CAS  Google Scholar 

  • Rother A, Schwarting AE (1975) The phenylquinolizidines of the seedlings of Heimia salicifolia. Lloydia 38(6):477–488

    PubMed  CAS  Google Scholar 

  • Rozan P, Kuo YH, Lambein F (2000) Free amino acids present in commercially available seedlings sold for human consumption. A potential hazard for consumers. J Agric Food Chem 48:716–723

    Article  PubMed  CAS  Google Scholar 

  • Rush MD, Kutchan TM, Coscia C (1985) Correlation of the appearance of morphinan alkaloids and laticifer cells in germinating Papaver bracteatum seedlings. Plant Cell Rep 4:237–240

    Article  CAS  Google Scholar 

  • Saito K, Suzuki H, Yamashita Y, Murakoshi I (1994) Isolation and enzymatic synthesis of an ester alkaloid, (−)-3β-hydroxy-13α-tigloyloxylupanine, from Cytisus scoparius. Phytochemistry 36:309–311

    Article  CAS  Google Scholar 

  • Schaffner U, Vrieling K, van der Meijden E (2003) Pyrrolizidine alkaloid content in Senecio: ontogeny and developmental constraints. Chemoecology 13:39–46

    Article  CAS  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Zheng Z, Dooner HK (2000) A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: characterization of wild-type and mutant alleles. Proc Natl Acad Sci USA 97:14807–14812

    Article  PubMed  CAS  Google Scholar 

  • Shimizu MM, Mazzafera P (2000) A role for trigonelline during imbibition and germination of coffee seeds. Plant Biol 2:605–611

    Article  CAS  Google Scholar 

  • Shimura H, Matsuura M, Takada N, Koda Y (2007) An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae). Phytochemistry 68:1442–1447

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Shukla AK, Shasany AK, Gupta MM, Khanuja SP (2006) Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 57:3921–3932

    Article  PubMed  CAS  Google Scholar 

  • Siegelman HW, Hendricks SB (1957) Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol 32:393–398

    Article  PubMed  CAS  Google Scholar 

  • Simões KJ, Du J, Kretzshmar FS, Broeckling CD, Stermiz FS, Vivanco JM, Braga MR (2008) Phytotoxic catechin leached by seeds of the tropical weed Sesbania virgata. J Chem Ecol 34:681–687

    Article  PubMed  CAS  Google Scholar 

  • Sitton D, West CA (1975) Casbene: an anti-fungal diterpene produced in cell-free extracts of Ricinus communis seedlings. Phytochemistry 14:1921–1925

    Article  CAS  Google Scholar 

  • Southwell IA, Russell MF (2003) The sequential onset of terpenoid biogenesis in seedlings: implications for Melaleuca alternifolia chemotype identification prior to plantation. Acta Hortic 597:31–47

    CAS  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Suzuki T, Waller GR (1987) Allelopathy due to purine alkaloids in tea seeds during germination. Plant Soil 98:131–136

    Article  CAS  Google Scholar 

  • Suzuki H, Sasaki R, Ogata Y, Nakamura Y, Sakurai N, Kitajima M, Takayama H, Kanaya S, Aoki K, Shibata D, Saito K (2008) Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry 69:99–111

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu S, Saito K, Murakoshi I, Ohmiya S (1991) New lupine alkaloids from the seedlings of Lupinus hirsutus and change of alkaloid pattern with germination. J Nat Prod 54:477–482

    Article  CAS  Google Scholar 

  • Tawara JN, Stermitz FR, Blokhin AV (1995) Alkaloids of young ponderosa pine seedlings and late stpes in the biosynthesis of pinidine. Phytochemistry 39:705–708

    Article  CAS  Google Scholar 

  • Tegelberg R, Julkunen-Tiitto R, Aphalo PJ (2004) Red : far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ 27:1005–1013

    Article  CAS  Google Scholar 

  • Thackray DJ, Wratten PJ, Edwards PJ, Niemeyer HM (1990) Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Graminae in relation to hydroxamic levels. Ann Appl Biol 116:573–582

    Article  CAS  Google Scholar 

  • Thomas TL (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5:1401–1410

    PubMed  CAS  Google Scholar 

  • Tian S, Nakamura K, Kayahara H (2004) Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J Agric Food Chem 52:4808–4813

    Article  PubMed  CAS  Google Scholar 

  • Toppel G, Witte L, Hartmann T (1988) N-oxidation and degradation of pyrrolizidine alkaloids during germination of Crotalaria scassellatii. Phytochemistry 27:3757–3760

    Article  CAS  Google Scholar 

  • Tso TC, Jeffrey RN (1956) Studies on tobacco alkaloids. I. Changes in nicotine and nornicotine content in Nicotiana. Plant Phvsiol 31:433–440

    Article  CAS  Google Scholar 

  • Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146–152

    Article  CAS  Google Scholar 

  • Tyler VE (1958) The ontogenesis of gramine in barley seedlings. J Pharm Sci 47:97–98

    Article  CAS  Google Scholar 

  • Valletta A, Santamaria AR, Pasqua G (2007) CPT accumulation in the fruit and during early phases of plant development in Camptotheca acuminata Decaisne (Nyssaceae). Nat Prod Res 21:1248–1255

    Article  PubMed  CAS  Google Scholar 

  • Van Haga RP (1954) Alkaloids in germinating seeds of Atropa belladonna. Nature 173:692

    Article  Google Scholar 

  • Vázquez-Flota F, Carrillo-Pech M, Minero-García Y, De Lourdes Miranda-Ham M (2004) Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant Physiol Bioch 42:623–628

    Article  CAS  Google Scholar 

  • Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL (2000) Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26(2):429–441

    Article  CAS  Google Scholar 

  • Weeks WW, Bush LP (1974) Alkaloid changes in tobacco seeds during germination. Plant Physiol 53:73–75

    Article  PubMed  CAS  Google Scholar 

  • Weidner S, Karamac M, Amarowicz R, Szypulska E, Golgowska AC (2007) Changes in composition of phenolic compounds and antioxidant properties of Vitis amurensis seeds germinated under osmotic stress. Act Physiol Plant 29:283–290

    Article  CAS  Google Scholar 

  • Weiergang I, Hipskind JD, Nicholson RL (1996) Synthesis of 3-deoxyanthocyanidin phytoalexins in sorghum occurs independent of light. Physiol Mol Plant P 49:377–388

    Article  CAS  Google Scholar 

  • Weir TL, Bais HP, Vivanco JM (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (−)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). J Chem Ecol 29:2397–2412

    Article  PubMed  CAS  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. Darwin review. J Exp Bot 62:3289–3309

    Article  PubMed  CAS  Google Scholar 

  • William RD, Ellis BE (1989) Age and tissue distribution of alkaloids in Papaver somniferum. Phytochemistry 28:2085–2088

    Article  Google Scholar 

  • Wink M (1983) Inhibition of seed germination by quinolizidine alkaloids. Aspects of allelopathy in Lupinus albus L. Planta 158:365–368

    Article  CAS  Google Scholar 

  • Wink M, Witte L (1985) Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell suspension cultures. Z Naturforsch 40c:767–775

    CAS  Google Scholar 

  • Wratten SD, Thackray DJ, Edwards PJ, Niemeyer HM (1988) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. In: Cavalloro R, Sunderland KD (eds) Integrated Crop Protection in Cereals. AA Balkema, Rotterdam, CEC, pp 57–60

    Google Scholar 

  • Wronka M, Lewak S, Tykarska T, Kuras M, Zobel AM (1994) Localization of phenolic compounds in the root cap columella of six-year-old dry seeds of Brassica napus during imbibition and germination. Ann Bot 74:321–326

    Article  CAS  Google Scholar 

  • Wu Z, Song L, Huang D (2011) Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J Agric Food Chem 59(11):5993–6003

    Article  PubMed  CAS  Google Scholar 

  • Xie YS, Arnason JT, Philogène BJR, Atkinson J, Morand P (1991) Distribution and variation of hydroxamic acids and related compounds in maize (Zea mays) root system. Can J Bot 69:677–681

    Article  CAS  Google Scholar 

  • Yamaji K, Ichihara Y (2012) The role of catechin and epicatechin in chemical defense against damping-off fungi of current-year Fagus crenata seedlings in natural forest. For Path 42(2012):1–7

    Article  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26–44

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zenner K, Bopp M (1987) Anthocyanin turnover in Sinapsis alba L. J Plant Physiol 126:475–482

    Article  CAS  Google Scholar 

  • Zheng XQ, Ashihara H (2004) Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Sci 166:807–813

    Article  CAS  Google Scholar 

  • Zheng XQ, Hayashibe E, Ashihara H (2005) Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. J Exp Bot 56:1615–1623

    Article  PubMed  CAS  Google Scholar 

  • Zheng XQ, Matsui A, Ashihara H (2008) Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings. Phytochemistry 69:390–395

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot 58:1771–1781

    Article  PubMed  CAS  Google Scholar 

  • Zobel AM, Schnug E, Wronka M, Tykarska T, Kuras M, Lewak S (1994) Localization of phenolic compounds in aging seeds of Brassica napus and during their imbibition. Acta Hortic (ISHS) 381:104–108

    CAS  Google Scholar 

  • Zu YG, Tang ZH, Yu JH, Liu SG, Wang W, Guo XR (2003) Different responses of camptothecin and 10-hydroxycamptothecin to heat shock in Camptotheca acuminata seedlings. Acta Bot Sin 45:809–814

    CAS  Google Scholar 

  • Zuanazzii JAs, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe In 11:784–794

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, This work was supported in part by a grant (CONACyT) from the Mexican Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Rosa González-Esquinca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De-la-Cruz Chacón, I., Riley-Saldaña, C.A. & González-Esquinca, A.R. Secondary metabolites during early development in plants. Phytochem Rev 12, 47–64 (2013). https://doi.org/10.1007/s11101-012-9250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9250-8

Keywords

Navigation