Skip to main content
Log in

Influence of environmental biotic factors on the content of saponins in plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Saponins occur constitutively in many plant species as part of their defense system. However, saponin content in plants seems to be dynamic, responding to many external factors including various biotic stimuli connected to herbivory attack and pathogenic infection, as well as involved in plant mutualistic symbioses with rhizobial bacteria and mycorrhizal fungi. Thus, not only saponins influence the living organisms interacting with plants, but in turn, all these interactions can impact the plant saponin content. According to their constitutive occurrence in plants, saponins are regarded mainly as phytoanticipins. Nevertheless, some presented data clearly point out to induced biosynthesis of saponins, especially in plant response to insect herbivory or inoculation with root symbionts, while the best studied examples of interactions between plants and their microbial pathogens show rather qualitative change of saponin composition based on chemical modifications of preformed, pre-infectional precursors. Simultaneously, despite evident inducibility of saponin production in plant cell cultures, the possible role of these compounds as phytoalexins synthesized in intact plants after pathogen infection is still not well documented. Some practical patterns and ecological consequences of biotic factors influencing saponin content in plants are briefly highlighted, with the special attention paid to microbial inoculants applied for optimisation of saponin synthesis in cultivated medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK, Renwick JAA (2003) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433

    Article  PubMed  CAS  Google Scholar 

  • Agrell J, Oleszek W, Stochmal A, Olsen M, Anderson P (2003) Herbivore-induced responses in alfalfa (Medicago sativa). J Chem Ecol 29:303–320

    Article  CAS  Google Scholar 

  • Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2004) Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J Chem Ecol 30:2309–2324

    Article  PubMed  CAS  Google Scholar 

  • Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2006) Elevated CO2 levels and herbivore damage alter host plant preferences. OIKOS 112:62–72

    Article  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60:519–531

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR (2008) Facing the future of plant-insect interaction research: le retour à la “raison d’être”. Plant Physiol 146:804–811

    Article  PubMed  CAS  Google Scholar 

  • Bidart-Bouzat MG, Iimeh-Nathaniel A (2008) Global change effects on plant chemical defences against insect herbivores. J Integr Plant Biol 50:1339–1354

    Article  PubMed  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  PubMed  CAS  Google Scholar 

  • Carter JP, Spink J, Cannon PF, Daniels MJ, Osbourn AE (1999) Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65(8):3364–3372

    PubMed  CAS  Google Scholar 

  • Fons F, Amellal N, Leyval C, Saint-Martin N, Henry M (2003) Effects of gypsophila saponins on bacterial growth kinetics and on selection of subterranean clover rhizosphere bacteria. Can J Microbiol 49:367–373

    Article  PubMed  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    Article  PubMed  CAS  Google Scholar 

  • Golawska S, Leszczynski B, Oleszek W (2006) Effect of low and high-saponin lines of alfalfa on pea aphid. J Insect Physiol 52:737–743

    Article  CAS  Google Scholar 

  • Gomez SK, Cox MM, Bede JC, Inoue K, Alborn HT, Tumlinson JH, Korth KL (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Physiol 58:114–127

    Article  PubMed  CAS  Google Scholar 

  • Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. CRC Crit Rev Food Sci Nutr 47:231–258

    Article  Google Scholar 

  • Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27:335–367

    Article  CAS  Google Scholar 

  • Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14:356–363

    Article  PubMed  CAS  Google Scholar 

  • Hoagland RA, Zablotowicz RM, Renny KN (1996) Studies on the phytotoxicity of saponins on weed and crop plants. Adv Exp Med Biol 405:57–73

    PubMed  CAS  Google Scholar 

  • Hostettmann KA, Marston A (eds) (1995) Saponins. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu X, Neill SJ, Cai W, Tang Z (2003) Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Functional Plant Biol 30:901–907

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  PubMed  CAS  Google Scholar 

  • Jenner H, Townsend B, Osbourn A (2005) Unravelling triterpene glycoside synthesis in plants: phytochemistry and functional genomics join forces. Planta 220:503–506

    Article  PubMed  CAS  Google Scholar 

  • Lacaille-Dubois MA, Wagner H (1996) A review of the biological and pharmacological activities of saponins. Phytomedicine 2:363–386

    Article  CAS  Google Scholar 

  • Liu J, Wu L, Wei S, Xiao X, Su C, Jiang P, Song Z, Wang T, Yu Z (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52:29–39

    Article  CAS  Google Scholar 

  • Mañero FJG, Ramos B, Garcia JAL, Probanza A, Casero MLB (2003) Systemic induction of the biosynthesis of terpenic compounds in Digitalis lanata. J Plant Physiol 160:105–113

    Article  Google Scholar 

  • Maor R, Shirasu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microb 8:399–404

    Article  CAS  Google Scholar 

  • Mayer AM (2004) Resistance to herbivores and fungal pathogens: Variation on a common theme? A review comparing the effect of secondary metabolites, induced and constitutive, on herbivores and fungal pathogens. Israel J Plant Sci 4:279–292

    Article  Google Scholar 

  • Morrisey JP, Wubben JP, Osbourn AE (2000) Stagonospora avenae secretes multiple enzymes that hydrolize oat leaf saponins. Mol Plant Microbe Interact 13:1041–1052

    Article  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    PubMed  CAS  Google Scholar 

  • Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007) Different mechanism for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA 104:17909–17915

    Article  PubMed  CAS  Google Scholar 

  • Oleszek W, Stochmal A (2002) Triterpene saponins and flavonoids in the seeds of Trifolium species. Phytochemistry 61:165–170

    Article  PubMed  CAS  Google Scholar 

  • Oleszek W, Hoagland RE, Zablotowicz RM (1999) Ecological significance of plant saponins. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press LLC, Boca Raton, pp 451–465

    Google Scholar 

  • Osbourn A (1996) Saponins and plant defence – a soap story. Trends Plant Sci 1:4–9

    Article  Google Scholar 

  • Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4

    Article  PubMed  CAS  Google Scholar 

  • Pearson CV, Massad TJ, Dyer LA (2008) Diversity cascades in alfalfa fields: from plant quality to agroecosystems diversity. Environ Entomology 37:947–955

    Article  Google Scholar 

  • Potter DA, Kimmerer TW (1989) Inhibition of herbivory on young holly leaves: evidence for the defensive role of saponins. Oecologia 78:322–329

    Article  Google Scholar 

  • Prasad R, Badge US, Puspangadan P, Varma A (2008) Bacopa monnieri L.: Pharmacological aspects and case study involving Piriformosa indica. Int J Integr Biol 3:100–108

    CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2009) Host plant as an organizer of microbial evolution in the beneficial symbioses. Phytochem Rev 8:519–534

    Article  CAS  Google Scholar 

  • Quidde T, Büttner P, Tudzynski P (1999) Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacidase. Eur J Plant Pathol 105:273–283

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Nisha MC, Selvaraj T (2008) Variability in growth, nutrition and phytochemical constituents of Plectrantus amboinicus (Lour) Spreng. as influenced by indigenous arbuscular mycorrhizal fungi. Mj Int J Sci Tech 2:431–439

    CAS  Google Scholar 

  • Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14:542–549

    Article  PubMed  CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  PubMed  CAS  Google Scholar 

  • Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Reddy MSS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount JW, Mendez P, Dixon RA (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220:696–707

    Article  PubMed  CAS  Google Scholar 

  • Szakiel A, Kabacińska B (2009) Triterpenoids in allelopathic potential of plants of Vaccinium genus. Acta Biochim Polon 56(Suppl. 2):76–77

    Google Scholar 

  • Szakiel A, Ruszkowski D, Janiszowska W (2005) Saponins in Calendula officinalis L. – structure, biosynthesis, transport and biological activity. Phytochem Rev 4:151–158

    Article  CAS  Google Scholar 

  • Szakiel A, Pączkowski C, Henry M (2009) Seasonal changes of triterpene acids and lignane content in Vaccinium myrtillus L. plant and its habitat. International conference on saponins: new trends in saponins. Nancy (France) Abstracts p 59

  • Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Hu X, Neill SJ, Fang J, Cai W (2005) Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C.A. Meyer. Plant Cell Physiol 46:947–954

    Article  PubMed  CAS  Google Scholar 

  • Zubek S, Błaszkowski J (2009) Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem Rev 8:571–580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Ministry of Science and Higher Education grant No 304 117 32/4335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Szakiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szakiel, A., Pączkowski, C. & Henry, M. Influence of environmental biotic factors on the content of saponins in plants. Phytochem Rev 10, 493–502 (2011). https://doi.org/10.1007/s11101-010-9164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9164-2

Keywords

Navigation