Advertisement

Phytochemistry Reviews

, Volume 8, Issue 3, pp 581–599 | Cite as

Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis

  • Damian Paul Drew
  • Nadja Krichau
  • Kirsten Reichwald
  • Henrik Toft Simonsen
Article

Abstract

The guaianolide group of sesquiterpene lactones contains a large number of compounds with biological activity. One of these guaianolides, thapsigargin from the genus Thapsia (Apiaceae), has been a subject of particular interest in recent years because of its ability to induce apoptosis, as the active part of a pro-drug, has produced promising results for the targeted treatment of prostate cancer. In this review, recent advances in understanding the biosynthetic pathway of sesquiterpenes in plants is described with a special emphasis on guaianolides, and a hypothetical pathway for the biosynthesis of thapsigargin is presented. Eighty-seven guaianolides from Apiaceae are presented. These compounds provide clues to possible enzymatic mechanisms generating the guaianolides in Apiaceae. Some of these 87 compounds have proven or might prove interesting with regards to their biological activity.

Keywords

Sesquiterpene lactones Thapsigargin SERCA inhibition 

Abbreviations

DMAPP

Dimethylallyl diphosphate

DXP

1-Deoxy-d-xylulose-5-phosphate

FPP

Farnesyl diphosphate

GGPP

Geranylgeranyl diphosphate

GPP

Geranyl diphosphate

HMG-CoA

(S)-3-Hydroxy-3-methylglutaryl-CoA

HPMA

N-(2-hydroxypropyl) methacrylamide

IPP

Isopentenyl diphosphate

MEP

2-C-methyl-d-erythritol-4-phosphate

MVA

Mevalonate

PSA

Prostate specific antigen

SERCA

Sarco/endoplasmatic reticulum calcium ATPase

References

  1. Ahmed S (1998) Isolation and Structural elucidation of chemical constituents from Fumaria indica, Ferula oopoda and Withania somnifera. Ph.D. Thesis, University of KarachiGoogle Scholar
  2. Andrews SP, Ball M, Wierschem F, Cleator E, Oliver S, Hogenauer K, Simic O, Antonello A, Hunger U, Smith MD, Ley SV (2007) Total synthesis of five thapsigargins: Guaianolide natural products exhibiting sub-nanomolar SERCA inhibition. Chem Eur J 13(20):5688–5712. doi: 10.1002/chem.200700302 CrossRefGoogle Scholar
  3. Appendino G, Valle MG, Caniato R, Cappelletti EM (1986) Sesquiterpene Lactones from Laserpitium garganicum. Phytochem 25(7):1747–1749. doi: 10.1016/S0031-9422(00)81252-2 CrossRefGoogle Scholar
  4. Azarken R, Guerra FM, Moreno-Dorado FJ, Jorge ZD, Massanet GM (2008) Substituent effects in the transannular cyclizations of germacranes. Synthesis of 6-epi-costunolide and five natural steiractinolides. Tetrahedron 64:10896–10905. doi: 10.1016/j.tet.2008.09.017 CrossRefGoogle Scholar
  5. Barton Sir D, Nakanishi K, Meth-Cohn O (1999) Comprehensive natural products chemistry. Elsevier Science Ltd, LondonGoogle Scholar
  6. Beekman AC, Woerdenbag WV, Pras N, Konings AWT, Wikström HV, Schmidt TJ (1997) Structure-cytotoxicity relationship of some helenanolide-type sesquiterpene lactones. J Nat Prod 60:252–257. doi: 10.1021/np960517h PubMedCrossRefGoogle Scholar
  7. Berenbaum MR (2001) Chemical mediation of coevolution: phylogenetic evidence for apiaceae and associates. Ann Mo Bot Gard 88:45–59. doi: 10.2307/2666131 CrossRefGoogle Scholar
  8. Berg JM, Tymoczkom JL, Stryer L (2007) Biochemistry. W.H. Freeman and company, New YorkGoogle Scholar
  9. Bertea CM, Voster A, Verstappen FWA, Maffei M, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia annua: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448(1–2):3–12. doi: 10.1016/j.abb.2006.02.026 PubMedCrossRefGoogle Scholar
  10. Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415(2):146–154. doi: 10.1016/S0003-9861(03)00233-9 PubMedCrossRefGoogle Scholar
  11. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95(8):4126–4133. doi: 10.1073/pnas.95.8.4126 PubMedCrossRefGoogle Scholar
  12. Chandran SS, Nan A, Rosen DM, Ghandehari H, Denmeade SR (2007) A prostate-specific antigen activated N-(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Mol Cancer Ther 6(11):2928–2937. doi: 10.1158/1535-7163.MCT-07-0392 PubMedCrossRefGoogle Scholar
  13. Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681. doi: 10.1038/nchembio836 PubMedCrossRefGoogle Scholar
  14. Choi JH, Ha J, Park JH, Lee JY, Lee YS, Park HJ, Choi JW, Masuda Y, Nakaya K, Lee KT (2002) Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols. Jpn J Cancer Res 93:1327–1333PubMedGoogle Scholar
  15. Christensen SB, Norup E, Rasmussen U (1984a) Chemistry and structure-activity relationship of the histamine secretagogue thapsigargin and related compounds. In: Krogsgaard-Larsen P, Christensen SB, Kofod H (eds) Natural products and drug development. Munksgaard, CopenhagenGoogle Scholar
  16. Christensen SB, Norup E, Rasmussen U, Madsen JO (1984b) Structure of histamine releasing guaianolides from Thapsia species. Phytochem 23(8):1659–1663. doi: 10.1016/S0031-9422(00)83463-9 CrossRefGoogle Scholar
  17. Christensen SB, Andersen A, Smitt UW (1997) Sesquiterpenoids from Thapsia species and medicinal chemistry of the thapsigargins. Fortschr Chem Org Naturst 71:129–167PubMedGoogle Scholar
  18. Christensen SB, Andersen A, Kromann H, Treiman M, Tombal B, Denmeade S, Isaacs JT (1999) Thapsigargin analogues for targeting programmed death of androgen-independent prostate cancer cells. Bioorg Med Chem 7(7):1273–1280. doi: 10.1016/S0968-0896(99)00074-7 PubMedCrossRefGoogle Scholar
  19. Christiansen AV, Paalum H, Andersen SM, Pujadas A, Smitt UW (1997) Quantitative determination of thapsigargins in roots and fruits from Thapsia gymnesica. Planta Med 63:565–567. doi: 10.1055/s-2006-957769 PubMedCrossRefGoogle Scholar
  20. De Kraker JW, Franssen MCR, de Groot A, Konig WA, Bouwmeester HJ (1998) (+)-Germacrene A biosynthesis—The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. Plant Physiol 117(4):1381–1392. doi: 10.1104/pp.117.4.1381 PubMedCrossRefGoogle Scholar
  21. De Kraker JW, Franssen MCR, Dalm MCF, de Groot A, Bouwmeester HJ (2001) Biosynthesis of germacrene A carboxylic acid in chicory roots. Demonstration of a cytochrome P450 (+)-germacrene A hydroxylase and NADP(+)-dependent sesquiterpenoid dehydrogenase(s) involved in sesquiterpene lactone biosynthesis. Plant Physiol 125(4):1930–1940. doi: 10.1104/pp.125.4.1930 PubMedCrossRefGoogle Scholar
  22. De Kraker JW, Franssen MCR, Joerink M, de Groot A, Bouwmeester HJ (2002) Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiol 129(1):257–268. doi: 10.1104/pp.010957 PubMedCrossRefGoogle Scholar
  23. Denmeade SR, Isaacs JT (2005) The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer. Cancer Biol Ther 4(1):14–22PubMedCrossRefGoogle Scholar
  24. Denmeade SR, Lin XS, Isaacs JT (1996) Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28(4):251–265. doi: 10.1002/(SICI)1097-0045(199604)28:4<251::AID-PROS6>3.0.CO;2-G PubMedCrossRefGoogle Scholar
  25. Dewick PM (1995) The Biosynthesis of C-5-C-20 Terpenoid Compounds. Nat Prod Rep 12:507–534. doi: 10.1039/np9951200507 PubMedCrossRefGoogle Scholar
  26. Djermanovic M, Stefanovic M, Djermanovic V, Milovanovic M (1995) Structure elucidation of the sesquiterpene lactones from plant species Laserpitium latifolium L. J Herbs Spices Med Plants 3(2):3–10. doi: 10.1300/J044v03n02_02 CrossRefGoogle Scholar
  27. Falsone G, Haddad H, Wendisch D (1986) Sesquiterpene lactone triesters with unusual structures from Thapsia garganica L (Umbelliferae). Arch Pharm (Weinheim) 319(4):372–379. doi: 10.1002/ardp.19863190414 CrossRefGoogle Scholar
  28. Fraga BM (2006) Natural sesquiterpenoids. Nat Prod Rep 23:943–972. doi: 10.1039/b507870a PubMedCrossRefGoogle Scholar
  29. GenSpera (2009) Technology information, GenSpera, Inc, San Antonio, Texas, USA. http://www.genspera.com. Cited 23 Feb 2009
  30. Ghisalberti EL (1994) The Daucane (Carotane) class of sesquiterpenes. Phytochem 37(3):597–623. doi: 10.1016/S0031-9422(00)90327-3 CrossRefGoogle Scholar
  31. Hampel D, Mosandl A, Wust M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochem 66(3):305–311. doi: 10.1016/j.phytochem.2004.12.010 CrossRefGoogle Scholar
  32. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278(29):26666–26676. doi: 10.1074/jbc.M302526200 PubMedCrossRefGoogle Scholar
  33. Holub M, Budesinsky M (1986) Review article number 20. Sesquiterpene lactones of the umbelliferae. Phytochem 25(9):2015–2026. doi: 10.1016/0031-9422(86)80060-7 CrossRefGoogle Scholar
  34. Holub M, Samek Z (1973) On Terpenes. 222. Structure of archangelolide, a sesquiterpenic lactone from Laserpitium archangelica wulf. Collect Czech Chem Commun 38(3):731–738Google Scholar
  35. Holub M, Degroote R, Herout V, Sorm F (1968) Plant Substances. 28. Oxygen-containing components of light petroleum extract of Laser trilobum (L) Borkh root structure of laserine. Collect Czech Chem Commun 33(9):2911Google Scholar
  36. Holub M, Herout V, Samek Z, Motl O (1972) Terpenes. 214. Structure of 2 sesquiterpenic lactones, isomontanolide and acetylisomontanolide from Laserpitium siler L. Collect Czech Chem Commun 37(4):1186Google Scholar
  37. Holub M, Samek Z, Vasickova S, Masojidkova M (1978a) Terpenes. 251. 11-hydroxy-1-beta-H, 5-beta-H, 6-alpha-, 7-alpha-H-guaian-6, 12-olides—relative and absolute-configuration of sesquiterpenic lactones montanolide, isomontanolide, acetylisomontanolide and related substances. Collect Czech Chem Commun 43(9):2444–2470Google Scholar
  38. Holub M, Motl O, Samek Z (1978b) Terpenes. 252. Structure and relative and absolute-configurations of sesquiterpenic lactones gradolide and polhovolide from Laserpitium Siler L. Collect Czech Chem Commun 43(9):2471–2477Google Scholar
  39. Holub M, Toman J, Herout V (1987) The phylogenetic-relationships of the asteraceae and apiaceae based on phytochemical characters. Biochem Syst Ecol 15(3):321–326. doi: 10.1016/0305-1978(87)90006-8 CrossRefGoogle Scholar
  40. Iranshahi M, Hosseini ST, Shahverdi AR, Molazade K, Khan SS, Ahmad VU (2008) Diversolides A-G, guaianolides from the roots of Ferula diversivittata. Phytochem 69:2753–2757 Observe that retraction of claims on diversolides A, C–G are in the process of being printedCrossRefGoogle Scholar
  41. Jakobsen CM, Denmeade SR, Isaacs JT, Gady A, Olsen CE, Christensen SB (2001) Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells. J Med Chem 44(26):4696–4703. doi: 10.1021/jm010985a PubMedCrossRefGoogle Scholar
  42. Kabilov MH, Saidkhodzhaev AI, Malikov VM, Melibaev S (1994) Sesquiterpene lactones of Ferula koso-poljanskyi. Chem Nat Compd 30(4):523. doi: 10.1007/BF00630416 CrossRefGoogle Scholar
  43. Lee SH, Lee MY, Kang HM, Han DC, Son KH, Yang DC, Sung ND, Lee CW, Kim HM, Kwon BM (2003) Anti-tumor activity of the farnesyl-protein transferase inhibitors arteminolides, isolated from artemisa. Bioorg Med Chem 11:4545–4549. doi: 10.1016/j.bmc.2003.08.008 PubMedCrossRefGoogle Scholar
  44. Li YS, Chen JJ, Zhou H, Luo SD, Wang HY, Zhu DY (2003) Two new guaianolides and a new daucene derivative from Sinodielsia yunnanensis. Planta Med 69(10):962–964. doi: 10.1055/s-2003-45111 PubMedCrossRefGoogle Scholar
  45. Liu HZ, Jensen KG, Tran LM, Chen M, Zhai L, Olsen CE, Sohoel H, Denmeade SR, Isaacs JT, Christensen SB (2006) Cytotoxic phenylpropanoids and an additional thapsigargin analogue isolated from Thapsia garganica. Phytochem 67(24):2651–2658. doi: 10.1016/j.phytochem.2006.10.005 CrossRefGoogle Scholar
  46. Milosavljevic S, Bulatovic V, Stefanovic M (1999) Sesquiterpene lactones from the Yugoslavian wild growing plant families asteraceae and apiaceae. J Serb Chem Soc 64(7–8):397–442Google Scholar
  47. Muckensturm B, Diyani F, Reduron J-P (1995) Grilactone and other terpenoids from Anthriscus nitida. Biochem Syst Ecol 23(7/8):875–876. doi: 10.1016/0305-1978(95)00058-5 CrossRefGoogle Scholar
  48. Muckensturm B, Diyani F, Nouën DL, Fkih-Tetouani S, Reduron J-P (1997) Ammolactone, a guaianolide from a medicinal plant, Ammodaucus leucotrichus. Phytochem 44(5):907–910. doi: 10.1016/S0031-9422(96)00621-8 CrossRefGoogle Scholar
  49. Nawrot J, Smitalova Z, Holub M (1983) Terpenes. 273. Deterrent activity of sesquiterpene lactones from the umbelliferae against storage pests. Biochem Syst Ecol 11(3):243–245. doi: 10.1016/0305-1978(83)90061-3 CrossRefGoogle Scholar
  50. Norup E, Smitt UW, Christensen SB (1986) The potencies of Thapsigargin and analogs as activators of rat peritoneal mast-cells. Planta Med 52(4):251–255. doi: 10.1055/s-2007-969144 PubMedCrossRefGoogle Scholar
  51. Nurmukhamedova MR, Kasymov SZ, Melibaev S (1982) Grilactone from Ferula-Penninervis. Him Prir Soedin 2:261Google Scholar
  52. Nurmukhamedova MR, Kasymov SZ, Sidyakin GP (1983) Ferolid—A new lactone from Ferula-Penninervis. Him Prir Soedin 4:533Google Scholar
  53. Nurmukhamedova MR, Kasymov S, Abdullaev ND, Sidyakin GP (1985) Structure of fegolide. Him Prir Soedin 3:335–337Google Scholar
  54. Okada K, Kasahara H, Yamaguchi S, Kawaide H, Kamiya Y, Nojiri H, Yamane H (2008) Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in arabidopsis. Plant Cell Physiol 49(4):604–616. doi: 10.1093/pcp/pcn032 PubMedCrossRefGoogle Scholar
  55. Piet DP, Schrijvers R, Franssen MCR, de Groot A (1995) Biotransformation of Germacrane epoxides by Cichorium intybus. Tetrahedron 51(22):6303–6314. doi: 10.1016/0040-4020(95)00272-A CrossRefGoogle Scholar
  56. Pinar M, Rico M, Rodriguez B (1982) Desangeloylshairidin, a sesquiterpene lactone from Guillonea scabra. Phytochem 21:1802–1804Google Scholar
  57. Pinar M, Rodriguez B, Rico M, Perales A, Fayos J (1983) Guillonein, An epoxyguaianolide from Guillonea scabra, X-Ray structure determination. Phytochem 22:987–990. doi: 10.1016/0031-9422(83)85037-7 CrossRefGoogle Scholar
  58. Rasmussen U, Christensen SB, Sandberg F (1978) Thapsigargine and thapsigargicine, two new histamine liberators from Thapsia garganica L. Acta Pharm Suec 15(2):133–140PubMedGoogle Scholar
  59. Rasmussen U, Christensen SB, Sandberg F (1981) Phytochemistry of the genus Thapsia. Planta Med 43:336–341. doi: 10.1055/s-2007-971521 PubMedCrossRefGoogle Scholar
  60. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943. doi: 10.1038/nature04640 PubMedCrossRefGoogle Scholar
  61. Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99(3):1158–1163. doi: 10.1073/pnas.032658999 PubMedCrossRefGoogle Scholar
  62. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524PubMedGoogle Scholar
  63. Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283(10):6067–6075. doi: 10.1074/jbc.M708950200 PubMedCrossRefGoogle Scholar
  64. Rubal JJ, Guerra FM, Moreno-Dorado FJ, Jorge ZD, Massanet GM, Sohoel H, Smitt UW, Frydenvang K, Christensen SB, Nielsen C, Erikson M (2006) Sesquiterpenes from Thapsia nitida var. meridionalis and Thapsia nitida var. nitida. J Nat Prod 69(11):1566–1571. doi: 10.1021/np0603065 PubMedCrossRefGoogle Scholar
  65. Rubal JJ, Guerra FM, Moreno-Dorado FJ, Akssira M, Mellouki F, Pujadas AJ, Jorge ZD, Massanet GM (2007a) Sulfur-containing sesquiterpenes from Thapsia villosa. Tetrahedron 60:159–164. doi: 10.1016/j.tet.2003.10.079 CrossRefGoogle Scholar
  66. Rubal JJ, Moreno-Dorado FJ, Guerra FM, Jorge ZD, Saouf A, Akssira M, Mellouki F, Romero-Garrido R, Massanet GM (2007b) A pyran-2-one and four meroterpenoids from Thapsia transtagana and their implication in the biosynthesis of transtaganolides. Phytochem 68:2480–2486. doi: 10.1016/j.phytochem.2007.06.023 CrossRefGoogle Scholar
  67. Rüngeler P, Castro V, Mora G, Gören N, Vichnewski W, Pahl HL, Merfort I, Schmidt TJ (1999) Inhibition of transcription factor NF-κB by sesquiterpene lactones: a proposed molecular mechanism of action. Bioorg Med Chem 7:2343–2352. doi: 10.1016/S0968-0896(99)00195-9 PubMedCrossRefGoogle Scholar
  68. Rychlewska U, Hodgson DJ, Holub M, Budesinsky M, Smitalova Z (1985) On Terpenes 288 The Structure of 2-Oxo-8-alpha-angeloyloxy-11-alpha-acetoxy-5-beta-H,6-alpha-H,7-alpha-H-guai-1(10),3-dien-6,12-olide, a sesquiterpene lactone from Laserpitium prutenicum L. Revision of the stereostructures of native 2-oxoguai-1(10),3-dien-6,12-olides from the species of the Umbelliferae family. Collect Czech Chem Commun 50(11):2607–2624Google Scholar
  69. Sagitdinova GV, Saidkhodzhaev AI, Malikov VM, Pimenov MG, Melibeav S (1990) Sesquiterpene lactones of Ferula clematidifolia and Ligularia alpigena. Him Prir Soedin 4:553–555Google Scholar
  70. Schall A, Reiser O (2008) Synthesis of biologically active guaianolides with a trans-annulated lactone moiety. Eur J Org Chem 2353–2364. doi: 10.1002/ejoc.200700880
  71. Serkerov SV (1980) Stereochemistry of Guaianolides of Ferula oopoda. Him Prir Soedin 5:629–633Google Scholar
  72. Serkerov SV, Rikhlevska U, Aleskerova AN, Mirbabaev NF (1991) New guanolide—Opofersin from Ferula Oopoda roots. Him Prir Soedin 3:318–319Google Scholar
  73. Siedle B, García-Piñeres AJ, Murillo R, Schulte-Mönting J, Castro V, Rüngeler P, Klaas CA, Da Costa FB, Kisiel W, Merfort I (2004) Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-κB. J Med Chem 47:6042–6054. doi: 10.1021/jm049937r PubMedCrossRefGoogle Scholar
  74. Smitalova Z, Budesinsky M, Saman D, Vasickova S, Holub M (1984) On Terpenes. 279. Components of the extract from the underground parts of Laserpitium siler L of Slovenian origin, mainly sesquiterpenic lactones. Collect Czech Chem Commun 49(4):852–870Google Scholar
  75. Smitalova Z, Budesinsky M, Saman D, Holub M (1986) On Terpenes. 291. Minor sesquiterpenic lactones of Laser trilobum (L) Borkh species. Collect Czech Chem Commun 51(6):1323–1339Google Scholar
  76. Smitt UW, Cornett C, Andersen A, Christensen SB, Avato P (1990) New proazulene guaianolides from Thapsia villosa. J Nat Prod 53(6):1479–1484. doi: 10.1021/np50072a012 PubMedCrossRefGoogle Scholar
  77. Smitt UW, Jager AK, Adsersen A, Gudiksen L (1995) Comparative studies in phytochemistry and fruit anatomy of Thapsia garganica and T. transtagana, Apiaceae (Umbelliferae). Bot J Linn Soc 117(4):281–292. doi: 10.1006/bojl.1995.0019 CrossRefGoogle Scholar
  78. Søhoel H, Jensen AM, Moller JV, Nissen P, Denmeade SR, Isaacs JT, Olsen CE, Christensen SB (2006) Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg Med Chem 14(8):2810–2815. doi: 10.1016/j.bmc.2005.12.001 PubMedCrossRefGoogle Scholar
  79. Song Q, Gomezbarrios ML, Hopper EL, Hjortso MA, Fischer NH (1995) Biosynthetic-studies of lactucin derivatives in hairy root cultures of Lactuca floridana. Phytochem 40(6):1659–1665. doi: 10.1016/0031-9422(95)00478-P CrossRefGoogle Scholar
  80. Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis)—Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273(4):2078–2089. doi: 10.1074/jbc.273.4.2078 PubMedCrossRefGoogle Scholar
  81. Suzuki K, Okasaka M, Kashiwada Y, Takaishi Y, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O, Sekiya M, Ikeshiro Y (2007) Sesquiterpene lactones from the roots of Ferula varia and their cytotoxic activity. J Nat Prod 70(12):1915–1918. doi: 10.1021/np0703996 PubMedCrossRefGoogle Scholar
  82. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580(5):1411–1416. doi: 10.1016/j.febslet.2006.01.065 PubMedCrossRefGoogle Scholar
  83. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418(6898):605–611. doi: 10.1038/nature00944 PubMedCrossRefGoogle Scholar
  84. Wang NH, Taniguchi M, Tsuji D, Doi M, Ohishi H, Yoza K, Baba K (2003) Four guaianolides from Sinodielsia yunnanensis. Chem Pharm Bull (Tokyo) 51(1):68–70. doi: 10.1248/cpb.51.68 CrossRefGoogle Scholar
  85. Wictome M, Holub M, East JM, Lee AG (1994) The importance of the hydroxyl moieties for inhibition of Ca2+-ATPases by trilobolide and 2, 5-di(tert-butyl)-1, 4-benzohydroquinone. Biochem Biophys Res Commun 199(2):916–921. doi: 10.1006/bbrc.1994.1316 PubMedCrossRefGoogle Scholar
  86. Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980–990. doi: 10.1007/s00253-006-0593-1 PubMedCrossRefGoogle Scholar
  87. Zhang S, Won YK, Ong CN, Shen HM (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5(3):239–249. doi: 10.2174/1568011053765976 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Damian Paul Drew
    • 1
  • Nadja Krichau
    • 1
  • Kirsten Reichwald
    • 1
  • Henrik Toft Simonsen
    • 1
  1. 1.VKR Research Centre Pro-Active Plants, Plant Biochemistry Laboratory, Department of Plant Biology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations