Skip to main content
Log in

Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The guaianolide group of sesquiterpene lactones contains a large number of compounds with biological activity. One of these guaianolides, thapsigargin from the genus Thapsia (Apiaceae), has been a subject of particular interest in recent years because of its ability to induce apoptosis, as the active part of a pro-drug, has produced promising results for the targeted treatment of prostate cancer. In this review, recent advances in understanding the biosynthetic pathway of sesquiterpenes in plants is described with a special emphasis on guaianolides, and a hypothetical pathway for the biosynthesis of thapsigargin is presented. Eighty-seven guaianolides from Apiaceae are presented. These compounds provide clues to possible enzymatic mechanisms generating the guaianolides in Apiaceae. Some of these 87 compounds have proven or might prove interesting with regards to their biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl diphosphate

DXP:

1-Deoxy-d-xylulose-5-phosphate

FPP:

Farnesyl diphosphate

GGPP:

Geranylgeranyl diphosphate

GPP:

Geranyl diphosphate

HMG-CoA:

(S)-3-Hydroxy-3-methylglutaryl-CoA

HPMA:

N-(2-hydroxypropyl) methacrylamide

IPP:

Isopentenyl diphosphate

MEP:

2-C-methyl-d-erythritol-4-phosphate

MVA:

Mevalonate

PSA:

Prostate specific antigen

SERCA:

Sarco/endoplasmatic reticulum calcium ATPase

References

  • Ahmed S (1998) Isolation and Structural elucidation of chemical constituents from Fumaria indica, Ferula oopoda and Withania somnifera. Ph.D. Thesis, University of Karachi

  • Andrews SP, Ball M, Wierschem F, Cleator E, Oliver S, Hogenauer K, Simic O, Antonello A, Hunger U, Smith MD, Ley SV (2007) Total synthesis of five thapsigargins: Guaianolide natural products exhibiting sub-nanomolar SERCA inhibition. Chem Eur J 13(20):5688–5712. doi:10.1002/chem.200700302

    Article  CAS  Google Scholar 

  • Appendino G, Valle MG, Caniato R, Cappelletti EM (1986) Sesquiterpene Lactones from Laserpitium garganicum. Phytochem 25(7):1747–1749. doi:10.1016/S0031-9422(00)81252-2

    Article  CAS  Google Scholar 

  • Azarken R, Guerra FM, Moreno-Dorado FJ, Jorge ZD, Massanet GM (2008) Substituent effects in the transannular cyclizations of germacranes. Synthesis of 6-epi-costunolide and five natural steiractinolides. Tetrahedron 64:10896–10905. doi:10.1016/j.tet.2008.09.017

    Article  CAS  Google Scholar 

  • Barton Sir D, Nakanishi K, Meth-Cohn O (1999) Comprehensive natural products chemistry. Elsevier Science Ltd, London

    Google Scholar 

  • Beekman AC, Woerdenbag WV, Pras N, Konings AWT, Wikström HV, Schmidt TJ (1997) Structure-cytotoxicity relationship of some helenanolide-type sesquiterpene lactones. J Nat Prod 60:252–257. doi:10.1021/np960517h

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR (2001) Chemical mediation of coevolution: phylogenetic evidence for apiaceae and associates. Ann Mo Bot Gard 88:45–59. doi:10.2307/2666131

    Article  Google Scholar 

  • Berg JM, Tymoczkom JL, Stryer L (2007) Biochemistry. W.H. Freeman and company, New York

    Google Scholar 

  • Bertea CM, Voster A, Verstappen FWA, Maffei M, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia annua: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448(1–2):3–12. doi:10.1016/j.abb.2006.02.026

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415(2):146–154. doi:10.1016/S0003-9861(03)00233-9

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95(8):4126–4133. doi:10.1073/pnas.95.8.4126

    Article  PubMed  CAS  Google Scholar 

  • Chandran SS, Nan A, Rosen DM, Ghandehari H, Denmeade SR (2007) A prostate-specific antigen activated N-(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Mol Cancer Ther 6(11):2928–2937. doi:10.1158/1535-7163.MCT-07-0392

    Article  PubMed  CAS  Google Scholar 

  • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681. doi:10.1038/nchembio836

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Ha J, Park JH, Lee JY, Lee YS, Park HJ, Choi JW, Masuda Y, Nakaya K, Lee KT (2002) Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols. Jpn J Cancer Res 93:1327–1333

    PubMed  CAS  Google Scholar 

  • Christensen SB, Norup E, Rasmussen U (1984a) Chemistry and structure-activity relationship of the histamine secretagogue thapsigargin and related compounds. In: Krogsgaard-Larsen P, Christensen SB, Kofod H (eds) Natural products and drug development. Munksgaard, Copenhagen

    Google Scholar 

  • Christensen SB, Norup E, Rasmussen U, Madsen JO (1984b) Structure of histamine releasing guaianolides from Thapsia species. Phytochem 23(8):1659–1663. doi:10.1016/S0031-9422(00)83463-9

    Article  CAS  Google Scholar 

  • Christensen SB, Andersen A, Smitt UW (1997) Sesquiterpenoids from Thapsia species and medicinal chemistry of the thapsigargins. Fortschr Chem Org Naturst 71:129–167

    PubMed  CAS  Google Scholar 

  • Christensen SB, Andersen A, Kromann H, Treiman M, Tombal B, Denmeade S, Isaacs JT (1999) Thapsigargin analogues for targeting programmed death of androgen-independent prostate cancer cells. Bioorg Med Chem 7(7):1273–1280. doi:10.1016/S0968-0896(99)00074-7

    Article  PubMed  CAS  Google Scholar 

  • Christiansen AV, Paalum H, Andersen SM, Pujadas A, Smitt UW (1997) Quantitative determination of thapsigargins in roots and fruits from Thapsia gymnesica. Planta Med 63:565–567. doi:10.1055/s-2006-957769

    Article  PubMed  CAS  Google Scholar 

  • De Kraker JW, Franssen MCR, de Groot A, Konig WA, Bouwmeester HJ (1998) (+)-Germacrene A biosynthesis—The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. Plant Physiol 117(4):1381–1392. doi:10.1104/pp.117.4.1381

    Article  PubMed  Google Scholar 

  • De Kraker JW, Franssen MCR, Dalm MCF, de Groot A, Bouwmeester HJ (2001) Biosynthesis of germacrene A carboxylic acid in chicory roots. Demonstration of a cytochrome P450 (+)-germacrene A hydroxylase and NADP(+)-dependent sesquiterpenoid dehydrogenase(s) involved in sesquiterpene lactone biosynthesis. Plant Physiol 125(4):1930–1940. doi:10.1104/pp.125.4.1930

    Article  PubMed  Google Scholar 

  • De Kraker JW, Franssen MCR, Joerink M, de Groot A, Bouwmeester HJ (2002) Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiol 129(1):257–268. doi:10.1104/pp.010957

    Article  PubMed  CAS  Google Scholar 

  • Denmeade SR, Isaacs JT (2005) The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer. Cancer Biol Ther 4(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Denmeade SR, Lin XS, Isaacs JT (1996) Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28(4):251–265. doi:10.1002/(SICI)1097-0045(199604)28:4<251::AID-PROS6>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  • Dewick PM (1995) The Biosynthesis of C-5-C-20 Terpenoid Compounds. Nat Prod Rep 12:507–534. doi:10.1039/np9951200507

    Article  PubMed  CAS  Google Scholar 

  • Djermanovic M, Stefanovic M, Djermanovic V, Milovanovic M (1995) Structure elucidation of the sesquiterpene lactones from plant species Laserpitium latifolium L. J Herbs Spices Med Plants 3(2):3–10. doi:10.1300/J044v03n02_02

    Article  Google Scholar 

  • Falsone G, Haddad H, Wendisch D (1986) Sesquiterpene lactone triesters with unusual structures from Thapsia garganica L (Umbelliferae). Arch Pharm (Weinheim) 319(4):372–379. doi:10.1002/ardp.19863190414

    Article  CAS  Google Scholar 

  • Fraga BM (2006) Natural sesquiterpenoids. Nat Prod Rep 23:943–972. doi:10.1039/b507870a

    Article  PubMed  CAS  Google Scholar 

  • GenSpera (2009) Technology information, GenSpera, Inc, San Antonio, Texas, USA. http://www.genspera.com. Cited 23 Feb 2009

  • Ghisalberti EL (1994) The Daucane (Carotane) class of sesquiterpenes. Phytochem 37(3):597–623. doi:10.1016/S0031-9422(00)90327-3

    Article  CAS  Google Scholar 

  • Hampel D, Mosandl A, Wust M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochem 66(3):305–311. doi:10.1016/j.phytochem.2004.12.010

    Article  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278(29):26666–26676. doi:10.1074/jbc.M302526200

    Article  PubMed  CAS  Google Scholar 

  • Holub M, Budesinsky M (1986) Review article number 20. Sesquiterpene lactones of the umbelliferae. Phytochem 25(9):2015–2026. doi:10.1016/0031-9422(86)80060-7

    Article  CAS  Google Scholar 

  • Holub M, Samek Z (1973) On Terpenes. 222. Structure of archangelolide, a sesquiterpenic lactone from Laserpitium archangelica wulf. Collect Czech Chem Commun 38(3):731–738

    CAS  Google Scholar 

  • Holub M, Degroote R, Herout V, Sorm F (1968) Plant Substances. 28. Oxygen-containing components of light petroleum extract of Laser trilobum (L) Borkh root structure of laserine. Collect Czech Chem Commun 33(9):2911

    CAS  Google Scholar 

  • Holub M, Herout V, Samek Z, Motl O (1972) Terpenes. 214. Structure of 2 sesquiterpenic lactones, isomontanolide and acetylisomontanolide from Laserpitium siler L. Collect Czech Chem Commun 37(4):1186

    CAS  Google Scholar 

  • Holub M, Samek Z, Vasickova S, Masojidkova M (1978a) Terpenes. 251. 11-hydroxy-1-beta-H, 5-beta-H, 6-alpha-, 7-alpha-H-guaian-6, 12-olides—relative and absolute-configuration of sesquiterpenic lactones montanolide, isomontanolide, acetylisomontanolide and related substances. Collect Czech Chem Commun 43(9):2444–2470

    CAS  Google Scholar 

  • Holub M, Motl O, Samek Z (1978b) Terpenes. 252. Structure and relative and absolute-configurations of sesquiterpenic lactones gradolide and polhovolide from Laserpitium Siler L. Collect Czech Chem Commun 43(9):2471–2477

    CAS  Google Scholar 

  • Holub M, Toman J, Herout V (1987) The phylogenetic-relationships of the asteraceae and apiaceae based on phytochemical characters. Biochem Syst Ecol 15(3):321–326. doi:10.1016/0305-1978(87)90006-8

    Article  CAS  Google Scholar 

  • Iranshahi M, Hosseini ST, Shahverdi AR, Molazade K, Khan SS, Ahmad VU (2008) Diversolides A-G, guaianolides from the roots of Ferula diversivittata. Phytochem 69:2753–2757 Observe that retraction of claims on diversolides A, C–G are in the process of being printed

    Article  CAS  Google Scholar 

  • Jakobsen CM, Denmeade SR, Isaacs JT, Gady A, Olsen CE, Christensen SB (2001) Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells. J Med Chem 44(26):4696–4703. doi:10.1021/jm010985a

    Article  PubMed  CAS  Google Scholar 

  • Kabilov MH, Saidkhodzhaev AI, Malikov VM, Melibaev S (1994) Sesquiterpene lactones of Ferula koso-poljanskyi. Chem Nat Compd 30(4):523. doi:10.1007/BF00630416

    Article  Google Scholar 

  • Lee SH, Lee MY, Kang HM, Han DC, Son KH, Yang DC, Sung ND, Lee CW, Kim HM, Kwon BM (2003) Anti-tumor activity of the farnesyl-protein transferase inhibitors arteminolides, isolated from artemisa. Bioorg Med Chem 11:4545–4549. doi:10.1016/j.bmc.2003.08.008

    Article  PubMed  CAS  Google Scholar 

  • Li YS, Chen JJ, Zhou H, Luo SD, Wang HY, Zhu DY (2003) Two new guaianolides and a new daucene derivative from Sinodielsia yunnanensis. Planta Med 69(10):962–964. doi:10.1055/s-2003-45111

    Article  PubMed  CAS  Google Scholar 

  • Liu HZ, Jensen KG, Tran LM, Chen M, Zhai L, Olsen CE, Sohoel H, Denmeade SR, Isaacs JT, Christensen SB (2006) Cytotoxic phenylpropanoids and an additional thapsigargin analogue isolated from Thapsia garganica. Phytochem 67(24):2651–2658. doi:10.1016/j.phytochem.2006.10.005

    Article  CAS  Google Scholar 

  • Milosavljevic S, Bulatovic V, Stefanovic M (1999) Sesquiterpene lactones from the Yugoslavian wild growing plant families asteraceae and apiaceae. J Serb Chem Soc 64(7–8):397–442

    CAS  Google Scholar 

  • Muckensturm B, Diyani F, Reduron J-P (1995) Grilactone and other terpenoids from Anthriscus nitida. Biochem Syst Ecol 23(7/8):875–876. doi:10.1016/0305-1978(95)00058-5

    Article  CAS  Google Scholar 

  • Muckensturm B, Diyani F, Nouën DL, Fkih-Tetouani S, Reduron J-P (1997) Ammolactone, a guaianolide from a medicinal plant, Ammodaucus leucotrichus. Phytochem 44(5):907–910. doi:10.1016/S0031-9422(96)00621-8

    Article  CAS  Google Scholar 

  • Nawrot J, Smitalova Z, Holub M (1983) Terpenes. 273. Deterrent activity of sesquiterpene lactones from the umbelliferae against storage pests. Biochem Syst Ecol 11(3):243–245. doi:10.1016/0305-1978(83)90061-3

    Article  CAS  Google Scholar 

  • Norup E, Smitt UW, Christensen SB (1986) The potencies of Thapsigargin and analogs as activators of rat peritoneal mast-cells. Planta Med 52(4):251–255. doi:10.1055/s-2007-969144

    Article  PubMed  CAS  Google Scholar 

  • Nurmukhamedova MR, Kasymov SZ, Melibaev S (1982) Grilactone from Ferula-Penninervis. Him Prir Soedin 2:261

    Google Scholar 

  • Nurmukhamedova MR, Kasymov SZ, Sidyakin GP (1983) Ferolid—A new lactone from Ferula-Penninervis. Him Prir Soedin 4:533

    Google Scholar 

  • Nurmukhamedova MR, Kasymov S, Abdullaev ND, Sidyakin GP (1985) Structure of fegolide. Him Prir Soedin 3:335–337

    Google Scholar 

  • Okada K, Kasahara H, Yamaguchi S, Kawaide H, Kamiya Y, Nojiri H, Yamane H (2008) Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in arabidopsis. Plant Cell Physiol 49(4):604–616. doi:10.1093/pcp/pcn032

    Article  PubMed  CAS  Google Scholar 

  • Piet DP, Schrijvers R, Franssen MCR, de Groot A (1995) Biotransformation of Germacrane epoxides by Cichorium intybus. Tetrahedron 51(22):6303–6314. doi:10.1016/0040-4020(95)00272-A

    Article  CAS  Google Scholar 

  • Pinar M, Rico M, Rodriguez B (1982) Desangeloylshairidin, a sesquiterpene lactone from Guillonea scabra. Phytochem 21:1802–1804

    CAS  Google Scholar 

  • Pinar M, Rodriguez B, Rico M, Perales A, Fayos J (1983) Guillonein, An epoxyguaianolide from Guillonea scabra, X-Ray structure determination. Phytochem 22:987–990. doi:10.1016/0031-9422(83)85037-7

    Article  CAS  Google Scholar 

  • Rasmussen U, Christensen SB, Sandberg F (1978) Thapsigargine and thapsigargicine, two new histamine liberators from Thapsia garganica L. Acta Pharm Suec 15(2):133–140

    PubMed  CAS  Google Scholar 

  • Rasmussen U, Christensen SB, Sandberg F (1981) Phytochemistry of the genus Thapsia. Planta Med 43:336–341. doi:10.1055/s-2007-971521

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943. doi:10.1038/nature04640

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99(3):1158–1163. doi:10.1073/pnas.032658999

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283(10):6067–6075. doi:10.1074/jbc.M708950200

    Article  PubMed  CAS  Google Scholar 

  • Rubal JJ, Guerra FM, Moreno-Dorado FJ, Jorge ZD, Massanet GM, Sohoel H, Smitt UW, Frydenvang K, Christensen SB, Nielsen C, Erikson M (2006) Sesquiterpenes from Thapsia nitida var. meridionalis and Thapsia nitida var. nitida. J Nat Prod 69(11):1566–1571. doi:10.1021/np0603065

    Article  PubMed  CAS  Google Scholar 

  • Rubal JJ, Guerra FM, Moreno-Dorado FJ, Akssira M, Mellouki F, Pujadas AJ, Jorge ZD, Massanet GM (2007a) Sulfur-containing sesquiterpenes from Thapsia villosa. Tetrahedron 60:159–164. doi:10.1016/j.tet.2003.10.079

    Article  CAS  Google Scholar 

  • Rubal JJ, Moreno-Dorado FJ, Guerra FM, Jorge ZD, Saouf A, Akssira M, Mellouki F, Romero-Garrido R, Massanet GM (2007b) A pyran-2-one and four meroterpenoids from Thapsia transtagana and their implication in the biosynthesis of transtaganolides. Phytochem 68:2480–2486. doi:10.1016/j.phytochem.2007.06.023

    Article  CAS  Google Scholar 

  • Rüngeler P, Castro V, Mora G, Gören N, Vichnewski W, Pahl HL, Merfort I, Schmidt TJ (1999) Inhibition of transcription factor NF-κB by sesquiterpene lactones: a proposed molecular mechanism of action. Bioorg Med Chem 7:2343–2352. doi:10.1016/S0968-0896(99)00195-9

    Article  PubMed  Google Scholar 

  • Rychlewska U, Hodgson DJ, Holub M, Budesinsky M, Smitalova Z (1985) On Terpenes 288 The Structure of 2-Oxo-8-alpha-angeloyloxy-11-alpha-acetoxy-5-beta-H,6-alpha-H,7-alpha-H-guai-1(10),3-dien-6,12-olide, a sesquiterpene lactone from Laserpitium prutenicum L. Revision of the stereostructures of native 2-oxoguai-1(10),3-dien-6,12-olides from the species of the Umbelliferae family. Collect Czech Chem Commun 50(11):2607–2624

    Google Scholar 

  • Sagitdinova GV, Saidkhodzhaev AI, Malikov VM, Pimenov MG, Melibeav S (1990) Sesquiterpene lactones of Ferula clematidifolia and Ligularia alpigena. Him Prir Soedin 4:553–555

    Google Scholar 

  • Schall A, Reiser O (2008) Synthesis of biologically active guaianolides with a trans-annulated lactone moiety. Eur J Org Chem 2353–2364. doi:10.1002/ejoc.200700880

  • Serkerov SV (1980) Stereochemistry of Guaianolides of Ferula oopoda. Him Prir Soedin 5:629–633

    Google Scholar 

  • Serkerov SV, Rikhlevska U, Aleskerova AN, Mirbabaev NF (1991) New guanolide—Opofersin from Ferula Oopoda roots. Him Prir Soedin 3:318–319

    Google Scholar 

  • Siedle B, García-Piñeres AJ, Murillo R, Schulte-Mönting J, Castro V, Rüngeler P, Klaas CA, Da Costa FB, Kisiel W, Merfort I (2004) Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-κB. J Med Chem 47:6042–6054. doi:10.1021/jm049937r

    Article  PubMed  CAS  Google Scholar 

  • Smitalova Z, Budesinsky M, Saman D, Vasickova S, Holub M (1984) On Terpenes. 279. Components of the extract from the underground parts of Laserpitium siler L of Slovenian origin, mainly sesquiterpenic lactones. Collect Czech Chem Commun 49(4):852–870

    CAS  Google Scholar 

  • Smitalova Z, Budesinsky M, Saman D, Holub M (1986) On Terpenes. 291. Minor sesquiterpenic lactones of Laser trilobum (L) Borkh species. Collect Czech Chem Commun 51(6):1323–1339

    CAS  Google Scholar 

  • Smitt UW, Cornett C, Andersen A, Christensen SB, Avato P (1990) New proazulene guaianolides from Thapsia villosa. J Nat Prod 53(6):1479–1484. doi:10.1021/np50072a012

    Article  PubMed  CAS  Google Scholar 

  • Smitt UW, Jager AK, Adsersen A, Gudiksen L (1995) Comparative studies in phytochemistry and fruit anatomy of Thapsia garganica and T. transtagana, Apiaceae (Umbelliferae). Bot J Linn Soc 117(4):281–292. doi:10.1006/bojl.1995.0019

    Article  Google Scholar 

  • Søhoel H, Jensen AM, Moller JV, Nissen P, Denmeade SR, Isaacs JT, Olsen CE, Christensen SB (2006) Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg Med Chem 14(8):2810–2815. doi:10.1016/j.bmc.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  • Song Q, Gomezbarrios ML, Hopper EL, Hjortso MA, Fischer NH (1995) Biosynthetic-studies of lactucin derivatives in hairy root cultures of Lactuca floridana. Phytochem 40(6):1659–1665. doi:10.1016/0031-9422(95)00478-P

    Article  CAS  Google Scholar 

  • Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis)—Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273(4):2078–2089. doi:10.1074/jbc.273.4.2078

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Okasaka M, Kashiwada Y, Takaishi Y, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O, Sekiya M, Ikeshiro Y (2007) Sesquiterpene lactones from the roots of Ferula varia and their cytotoxic activity. J Nat Prod 70(12):1915–1918. doi:10.1021/np0703996

    Article  PubMed  CAS  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580(5):1411–1416. doi:10.1016/j.febslet.2006.01.065

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418(6898):605–611. doi:10.1038/nature00944

    Article  PubMed  CAS  Google Scholar 

  • Wang NH, Taniguchi M, Tsuji D, Doi M, Ohishi H, Yoza K, Baba K (2003) Four guaianolides from Sinodielsia yunnanensis. Chem Pharm Bull (Tokyo) 51(1):68–70. doi:10.1248/cpb.51.68

    Article  CAS  Google Scholar 

  • Wictome M, Holub M, East JM, Lee AG (1994) The importance of the hydroxyl moieties for inhibition of Ca2+-ATPases by trilobolide and 2, 5-di(tert-butyl)-1, 4-benzohydroquinone. Biochem Biophys Res Commun 199(2):916–921. doi:10.1006/bbrc.1994.1316

    Article  PubMed  CAS  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980–990. doi:10.1007/s00253-006-0593-1

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Won YK, Ong CN, Shen HM (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5(3):239–249. doi:10.2174/1568011053765976

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Toft Simonsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, D.P., Krichau, N., Reichwald, K. et al. Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis. Phytochem Rev 8, 581–599 (2009). https://doi.org/10.1007/s11101-009-9130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9130-z

Keywords

Navigation