Phytochemistry Reviews

, Volume 5, Issue 2–3, pp 193–204 | Cite as

Plant cytochrome P450s from moss to poplar

  • David R. Nelson
Open Access
Original Paper


This review represents the first attempt to define the origins of the major P450-containing pathways in plants. Comparative genomics with five complete P450 gene sets from Chlamydomonas reinhardtii with 39 sequences, Physcomitrella patens (moss) with 71 sequences, rice with 356 sequences, Arabidopsis with 246 sequences and Populus with 312 sequences is used to estimate how old each gene family is and to identify the most ancient P450s and their pathways. The pathways included are the phenylpropanoid and lignin pathways, the gibberellin pathway, the oxylipin/jasmonate pathway, the basic flavonoid pathway, the brassinosteroid pathway, the abscisic acid pathway and the cutin synthesis pathway. An effort is made to identify at least some examples of P450s that have emerged at many different levels of the evolutionary bush, from the base to the tips.


Cytochrome P450 Pathway Evolution Plants Moss Populus 


  1. Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131PubMedCrossRefGoogle Scholar
  2. Akashi T, Aoki T, Kameya N, Nakamura I, Ayabe S (1997) Two new cytochrome P450 cDNAs (Accession Nos. AB001379 and AB001380) from elicitor-induced licorice (Glycyrrhiza echinata L.) cells (PGR97-167). Plant Physiol 115:1288Google Scholar
  3. Assembly/Alignment/Annotation of twelve related Drosophila species. Accessed June 23, 2006
  4. Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513PubMedCrossRefGoogle Scholar
  5. Batard Y, Schalk M, Pierrel MA, Zimmerlin A, Durst F, Werck-Reichhart D (1997) Regulation of the cinnamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol 113:951–959PubMedGoogle Scholar
  6. Baylor College of Medicine sea urchin BLAST server =Spurpuratus Accessed June 22, 2006
  7. Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15:1632–1642PubMedCrossRefGoogle Scholar
  8. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449PubMedCrossRefGoogle Scholar
  9. Bozak KR, Yu H, Sirevag R, Christoffersen RE (1990) Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci USA 87:3904–3908PubMedCrossRefGoogle Scholar
  10. Cahoon EB, Ripp KG, Hall SE, McGonigle B (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol 128:615–624PubMedCrossRefGoogle Scholar
  11. Chlamydomonas reinhardtii cytochrome P450s Accessed June 23, 2006
  12. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76PubMedCrossRefGoogle Scholar
  13. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220PubMedCrossRefGoogle Scholar
  14. Community Sequencing Project plans 2005 Accessed June 23, 2006
  15. Cytochrome P450 homepage Accessed June 23, 2006
  16. Duan H, Schuler MA (2005) Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiol 137:1067–1081PubMedCrossRefGoogle Scholar
  17. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902PubMedCrossRefGoogle Scholar
  18. Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metabol Drug Interact 12:189–206PubMedGoogle Scholar
  19. El-Sayed NM et al (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404– 409Google Scholar
  20. Ensmbl Trace Repository Statistics Accessed June 22, 2006
  21. ESTdb release 012006, June 16, 2006 summary by organism Accessed June 23, 2006
  22. Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45PubMedCrossRefGoogle Scholar
  23. Fungal Genome Sequencing Accessed June 23, 2006
  24. Gordon and Betty Moore Foundation Microbial Genome sequencing project Accessed June 23, 2006
  25. Government list of genome projects and white papers Accessed June 23, 2006
  26. Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK Jr, Maiti R, Chan AP, Yu C, Farzad M, Wu D, White O, Town CD (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3(1):7PubMedCrossRefGoogle Scholar
  27. Helliwell CA, Poole A, Peacock WJ, Dennis ES (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps␣of gibberellin biosynthesis. Plant Physiol 119:507–510PubMedCrossRefGoogle Scholar
  28. Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070PubMedCrossRefGoogle Scholar
  29. Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Increasing evidence indicates that the collective biological importance of oxylipins in plants is comparable to that of the eicosanoid family of lipid mediators in animals. Curr Opin Plant Biol 5:230–236PubMedCrossRefGoogle Scholar
  30. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229PubMedCrossRefGoogle Scholar
  31. Imaishi H, Matsumoto Y, Ishitobi U, Ohkawa H (1999) Encoding of a cytochrome P450-dependent lauric acid monooxygenase by CYP703A1 specifically expressed in the floral buds of petunia hybrida. Biosci Biotechnol Biochem 63:2082–2090PubMedCrossRefGoogle Scholar
  32. Imaishi H, Matsuo S, Swai E, Ohkawa H (2000) CYP78A1 preferentially expressed in developing inflorescences of Zea mays encoded a cytochrome P450-dependent lauric acid 12-monooxygenase. Biosci Biotechnol Biochem 64:1696–1701PubMedCrossRefGoogle Scholar
  33. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  34. Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804PubMedCrossRefGoogle Scholar
  35. Joint Genome Institute Chlamydomonas reinhardtii homepage html Accessed June 23, 2006
  36. Joint Genome Institute Populus trichocarpa homepage Accessed June 23, 2006
  37. Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212PubMedCrossRefGoogle Scholar
  38. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254PubMedCrossRefGoogle Scholar
  39. Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA 103:3474–3479PubMedCrossRefGoogle Scholar
  40. Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R (2005) Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiol 138:2033–2047PubMedCrossRefGoogle Scholar
  41. Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim SK (2005) Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397–2412PubMedCrossRefGoogle Scholar
  42. Kizawa H, Tomura D, Oda M, Fukamizu A, Hoshino T, Gotoh O, Yasui T, Shoun H (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. J Biol Chem 266:10632–10637PubMedGoogle Scholar
  43. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450␣CYP707A encodes ABA 8′-hydroxylases: key␣enzymes in ABA catabolism. EMBO J 23:1647–1656PubMedCrossRefGoogle Scholar
  44. Liu CJ, Huhman D, Summer LW, Dixon RA (2003) Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes from Medicago truncatula. Plant J 36:471–481PubMedCrossRefGoogle Scholar
  45. Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JF (2006) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26:1–16PubMedCrossRefGoogle Scholar
  46. Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, Encoding a putative cytochrome P450 monooxygenase, regulates the internodes elongation by modulating GA responses in rice. Plant Cell Physiol 47:181–191PubMedCrossRefGoogle Scholar
  47. Malonek S, Bomke C, Bornberg-Bauer E, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005) Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochem 66:1296–1311CrossRefGoogle Scholar
  48. Martens S, Mithofer A (2005) Flavones and flavone synthases. Phytochem 66:2399–2407CrossRefGoogle Scholar
  49. MetaCyc Pathway: maackiain biosynthesis Accessed June 23, 2006
  50. Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh J, Nagato Y, Kurata N (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA 101:875–880PubMedCrossRefGoogle Scholar
  51. Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, Wadano A, Sakata K, Ohta D (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell 18:1008–1022PubMedCrossRefGoogle Scholar
  52. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  53. National Microbial Pathogen Data Resource Center. Chicago: Computation Institute, University of Chicago/Argonne National Laboratory, (2005) Index of completed genomes index.php?id=87. Available from: http://www.nmpdr. org. Cited June 23, 2006
  54. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10PubMedCrossRefGoogle Scholar
  55. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772PubMedCrossRefGoogle Scholar
  56. Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J␣Biol Chem 280:17873–17879PubMedCrossRefGoogle Scholar
  57. NSF Genomics of Loblolly Pine Embryogenesis Project Accessed June 23, 2006
  58. NSF 2010 Project: Functional Genomics of Arabidopsis P450s. Accessed June 23, 2006
  59. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, Sasaki T (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744PubMedCrossRefGoogle Scholar
  60. Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960PubMedCrossRefGoogle Scholar
  61. Pavy N, Paule C, Parsons L, Crow JA, Morency MJ, Cooke J, Johnson JE, Noumen E, Guillet-Claude C, Butterfield Y, Barber S, Yang G, Liu J, Stott J, Kirkpatrick R, Siddiqui A, Holt R, Marra M, Seguin A, Retzel E, Bousquet J, MacKay J (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 6:144PubMedCrossRefGoogle Scholar
  62. PlasmoDB: The Plasmodium Genome Resource Accessed June 23, 2006
  63. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449PubMedCrossRefGoogle Scholar
  64. Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506PubMedCrossRefGoogle Scholar
  65. Schroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schroder J (1999) Light- induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102PubMedCrossRefGoogle Scholar
  66. Sequence status of fungal genomes in the Fungal Genome Initiative Accessed June 23, 2006
  67. Stafford HA (1991) Flavonoid evolution: an enzymatic approach. Plant Physiol 96:680–685 Accessed June 23, 2006Google Scholar
  68. The abscisic acid site. Accessed June 23, 2006
  69. Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid ε-ring hydroxylation activity. Proc Natl Acad Sci USA 101:402–407PubMedCrossRefGoogle Scholar
  70. Tissue profiling expression data for Arabidopsis P450 genes profiling.shtml Accessed June 23, 2006
  71. ToxoDB Accessed June 23, 2006
  72. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34PubMedCrossRefGoogle Scholar
  73. UCSC Genome Browser, University of California, Santa Cruz Accessed June 22, 2006
  74. Venter Institute marine microbial genome project. 24.php Accessed June 23, 2006
  75. de Vetten N, ter Horst J, van Schaik HP, de Boer A, Mol J, Koes R (1999) A cytochrome b5 is required for full activity of flavonoid 3′, 5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc Natl Acad Sci USA 96:778–783PubMedCrossRefGoogle Scholar
  76. Warne TR, Hickok LG (2005) Evidence for a gibberellin biosynthetic origin of Ceratopteris antheridiogen 1. Plant Physiol 139:1935–1945CrossRefGoogle Scholar
  77. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc Natl Acad Sci USA 98:9694–9699PubMedCrossRefGoogle Scholar
  78. Why sequence Physcomitrella patens? Accessed June 23, 2006
  79. Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7:1307–1317PubMedCrossRefGoogle Scholar
  80. Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D, Tang X, Jenks MA, Zhou JM (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913PubMedCrossRefGoogle Scholar
  81. Yamane H, Takajhashi N, Takeno K, Furuya M (1979) Identification of gibberellin A9 methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta 1437:251–256CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Molecular Sciences and the Center of Excellence for Genomics and BioinformaticsThe University of TennesseeMemphisUSA

Personalised recommendations