Phytochemistry Reviews

, Volume 6, Issue 1, pp 81–95 | Cite as

Structural diversity and defensive properties of diterpenoid alkaloids

  • Matías Reina
  • Azucena González-Coloma
Original paper


Diterpenoid alkaloids are compounds of pharmacological interest. Forty four C19 norditerpenoid (NDAs) and 23 C20 diterpenoid (DAs) alkaloids isolated from Aconitum, Delphinium and Consolida species were tested for their insecticidal effects (antifeedant and toxic) on Spodoptera littoralis and Leptinotarsa decemlineata, their cytotoxicity on tumoral cell lines with several multidrug resistance mechanisms, and their antiparasitic effects against Trypanososma cruzi and Leishmania infantum. Overall, C19 norditerpene alkaloids (NDAs) resulted better insect antifeedants and post-ingestive toxicants than the related C20 diterpene alkaloids (DAs). Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate␣with the␣agonist/antagonist insecticidal/ antifeedant model proposed for nicotininc insecticides.␣Among the most potent antifeedants (EC50 < 0.2 µg/cm2) are␣the NDAs 1,14 diacetylcardiopetaline (10),␣18-hydroxy-14-O-methylgadesine (34) and 14-O-acetyldelectinine (28) (to CPB) and the DA 19-oxodihydroatisine (55) (to S.␣littoralis). DAs had strong antiparasitic effects with molecular selectivity while NDAs were inactive. Delphigraciline (53), 15,22-O-Diacetyl-19-oxo-dihydroatisine (56), azitine (64) and isoazitine (65) were active against L. infantum promastigotes and had a moderate effect on T. cruzi epimastigotes, while atisinium chloride (59) and 13-oxocardiopetamine (48) had a potent effect on T. cruzi epimastigotes. These compounds were not toxic to the host cell, significantly reduced parasite infection capacity and severely affected the multiplication of their extracellular forms. Several NDAs exhibited selective cytotoxicity to cancerous cells and some of these had irreversible effects on SW480, HeLa and SkMel25 cell lines (neoline 5, pubescenine 16, 14-deacetylajadine 26, lycoctonine 27, dehydrotakaosamine 35, and ajadelphinine 38). These cytotoxic effects could be related to the inhibition of ATP production.


Aconitum Consolida Delphinium Diterpenoid alkaloids Insecticidal Cytotoxic Antiparasitic activity Structure–activity relationships 



Colorado potato beetle


Diterpenoid alkaloid


Norditerpenoid alkaloid


Piperonyl butoxide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by grants CICYT (DGES PB97-1265), MCYT (BQU2001-1505) and CAM (07M/0073/2002). We gratefully acknowledge S. Carlin for language revision.


  1. Ameri A (1998) The effects of aconitum alkaloids on the central nervous system. Prog Neurobiol 56:211–235PubMedCrossRefGoogle Scholar
  2. Atta-ur-Rahman M, Choudary MI (1999) Diterpenoid and steroidal alkaloids. Nat Prod Rep 16:619PubMedCrossRefGoogle Scholar
  3. Bessonova IA, Shaidkhodzaeva SA (2000) Hetisane-type diterpene alkaloids. Chem Nat Comp 36:419–477CrossRefGoogle Scholar
  4. Bloomquist JR (2001) GABA and glutamate receptors as biochemical sites for insecticide action. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer-Verlag, BerlinGoogle Scholar
  5. Cohen RW, Mahoney DA, Can HD (2002) Possible regulation of feeding behavior in cockroach nymphs by the neurotransmitter octopamine. J Insect Behav 15:37–50CrossRefGoogle Scholar
  6. De la Fuente G, Reina M (1990) Some phytochemical studies of the genera Aconitum, L. Delphinium L. and Consolida (DC) S. F. Gray. Collect Bot (Barcelona) 19:129–140Google Scholar
  7. De Inés C, Reina M, Gavín JA, González-Coloma A (2006) In vitro cytotoxicity of norditerpenoid alkaloids. Z Naturforsch 61C:11–18Google Scholar
  8. Dobelis P, Madl JE, Pfister JA, Manners GD, Walrond JP (1999) Effects of Delphinium alkaloids on neuromuscular transmission. J Pharm Exp Ther 291:538–546Google Scholar
  9. Dzhakhangirov FN, Sultankhodzhaev MN, Tashkhodzhaev B, Salimos BT (1997) Diterpenoid alkaloids as a new class of antiarrthythmic agents. Structure-activity relationship Chem Nat Compd 33:190–202CrossRefGoogle Scholar
  10. Friese J, Gleitz J, Gutster UT, Henbach JF, Matthiesen T, Wilffert B, Selve N (1997) Aconitum sp alkaloids: the modulation of voltage-dependent Na+ channels, toxicity and antinoniceptive properties. Eur J Pharmacol 337:165–174PubMedCrossRefGoogle Scholar
  11. González P, Marín C, Rodríguez-González I, Hitos A, Rosales MJ, Reina M, Díaz JG, González-Coloma A, Sánchez-Moreno M (2005) In vitro activity of C20 diterpenoid alkaloid derivatives on promastigotes and intracellular amastigotes of Leishmania infantum. Int J Antimicrob Agents 25:136–141PubMedCrossRefGoogle Scholar
  12. González P, Marín C, Rodríguez-González I, Hitos A, Rosales MJ, Reina M, González-Coloma A, Sánchez-Moreno M (2006) Diterpenoid alkaloid derivatives as chemotherapeutic agents in American trypanosomiasis. Pharmacology 76:123–128PubMedCrossRefGoogle Scholar
  13. González-Coloma A, Guadaño A, Gutiérrez C, Cabrera R, De la Peña E, De la Fuente G, Reina M (1998) Antifeedant Delphinium diterpene alkaloids. Structure-activity relationships. J Agric Food Chem 46:286–290PubMedCrossRefGoogle Scholar
  14. González-Coloma A, Valencia F, Martín N, Hoffmann JJ, Hutter L, Marco JA, Reina M (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28:117–129PubMedCrossRefGoogle Scholar
  15. González-Coloma A, Reina M, Madinaveitia A, Guadaño A, Santana O, Martínez-Díaz R, Ruiz-Mesía L, Alva A, Grandez M, Díaz R, Gavín JA, De la Fuente G (2004a) Structural diversity and defensive properties of norditerpenoids alkaloids. J Chem Ecol 30:1393–1408CrossRefGoogle Scholar
  16. González-Coloma A, Reina M, Guadaño A, Martínez-Díaz R, Díaz JG, García-Rodríguez J, De la Fuente G (2004b) Antifeedant C-20 diterpene alkaloids. Chem Biodiv 1:1327–1335CrossRefGoogle Scholar
  17. Hardick DJ, Blagbrough IS, Cooper G, Potter BV, Critchley T, Wonnacott S (1996) Nudicauline and elatine as potent norditerpenoid ligands at rat neuronal alpha-bungarotoxin binding sites: importance of the (methylsuccinimido) benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J Med Chem 39:4860–4866PubMedCrossRefGoogle Scholar
  18. Heinz CA, Zagerl AR, Berenbaum M (1996) Effects of natural and synthetic neuroactive substances on the growth and feeding of cabbage looper Trichoplusia ni. Entomol Exp Appl 80:443–451CrossRefGoogle Scholar
  19. Jacyno JM (1996) Lycaconitine revisited: Partial synthesis and neuronal nicotinic acetylcholine receptor affinities. J Nat Prod 59:707–709Google Scholar
  20. Jennings KR, Brown DG, Wright DPJ (1986) Methyllycaconitine, a naturally occurring insecticide with a high affinity for the insect cholinergic receptor. Experientia 42:611–613CrossRefGoogle Scholar
  21. Kukel CF, Jennings KR (1994) Delphinium alkaloids as inhibitors of α-bungarotoxin binding to rat and insect neural membranes. Can J Physiol Pharmacol 72:104–107PubMedGoogle Scholar
  22. Li L, Shen YM, Yang XS, Zuo GY, Shen ZQ, Chen ZH, Hao XJ (2002a) Antiplatelet aggregation activity of diterpene alkaloids from Spiraea japonica. Eur J Pharmacol 449:23–28Google Scholar
  23. Li L, Shen YM, Yang XS, Wu WL, Wang BG, Chen ZH, Hao XJ (2002b) Effects of spiramine T on antioxidant enzymatic activities and nitric oxide production in cerebral ischemia-reperfusion gerbils. Brain Res 944:205–209CrossRefGoogle Scholar
  24. Mullin CA, González-Coloma A, Gutiérrez C, Reina M, Eichenseer H, Hollister B, Chyb S (1997) Antifeedant effects of some novel terpenoids on Chrysomelidae beetles: comparisons with alkaloids on an alkaloid-adapted and a non-adapted species. J Chem Ecol 23:1851–1866CrossRefGoogle Scholar
  25. Nauen R, Ebbinghaus U, Tietjen K (1999) Ligands of the nicotinic acetylcholine receptor as insecticides. Pestic Sci 55:566–614Google Scholar
  26. Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H (1968) Studies of the respiratory chain-linked reduced nicotamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem 243:844–847PubMedGoogle Scholar
  27. Panter KE, Manners GD, Stegelmeier BL, Gardner DR, Ralphs MH, Pfister JA, James LF (2002) Larkspur poisoning: toxicology and alkaloid structure-activity relationships. Biochem Syst Ecol 30:113–128CrossRefGoogle Scholar
  28. Reina M, Madinaveitia A, De la Fuente G (1997) Further norditerpenoid alkaloids from Delphinium cardiopetalum. Phytochemistry 45:1707–1711Google Scholar
  29. Reina M, Nold M, Santana O, Orihuela JC, González-Coloma A (2002) C-5 substituted antifeedant silphinene sesquiterpenes. J Nat Prod 65:448–453PubMedCrossRefGoogle Scholar
  30. Reina M, Mancha R, Rodriguez ML, Martínez-Díaz RA, Bailen M, González-Coloma A (2006) Diterpenoid alkaloids from Delphinium gracile DC. Nat Prod Lett (in press)Google Scholar
  31. Ruiz Mesia L, Madinaveitia A, Reina M, Rodriguez ML, De la Fuente G, Ruiz-Mesia W (2002) Four new alkaloids from Consolida glandulosa. J Nat Prod 65:496–499Google Scholar
  32. Sanes JR, Prescott DJ, Hildebrand JG (1977) Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the koth Manduca sexta. Brain Res 119:389–402PubMedCrossRefGoogle Scholar
  33. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565PubMedCrossRefGoogle Scholar
  34. Seitz U, Ameri A (1998) Different effects of [3H] noradrenaline uptake of the aconitum alkaloids aconitine, 3-acetylaconitine, lappaconitine, and N-desacetyllappaconitine in rat hippocampus. Biochem Pharmacol 55:883–888PubMedCrossRefGoogle Scholar
  35. Ulubelen A, Mericli A, Kilincer N, Ferizli AG, Emecki M, Pelletier W (2001) Insect repellent activity of diterpenoid alkaloids. Phytother Res 15:170–171PubMedCrossRefGoogle Scholar
  36. Wang F-P, Liang X-T (2002) In: The alkaloids, vol 59. Academic Press, San Diego, pp 1–280Google Scholar
  37. Wink M, Schmeller T, Latz-Brüning B (1998) Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA and other molecular targets. J␣Chem Ecol 24:1881–1937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Instituto de Productos Naturales y Agrobiología, IPNACSICLa Laguna-TenerifeSpain
  2. 2.Instituto de Ciencias Agrarias, ICA-CCMACSICMadridSpain

Personalised recommendations