Advertisement

Photosynthetica

, Volume 56, Issue 4, pp 998–1009 | Cite as

Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress

  • J. Lin
  • J. P. Li
  • F. Yuan
  • Z. Yang
  • B. S. Wang
  • M. Chen
Original paper
  • 44 Downloads

Abstract

High salt concentration is a major abiotic stress limiting plant growth and productivity in many areas of the world. Elaeagnus angustifolia L. adapts to adverse environments and is widely planted in the western region of China as a windbreaker and for landscape and soil stabilization. High salt concentrations inhibited photosynthesis of E. angustifolia, but the mechanism is not known. In this paper, RNA-sequencing was used to investigate effects of salt stress on the photosynthetic characteristics of the species. In total, 584 genes were identified and involved in photosynthetic pathways. The downregulation of genes that encode key enzymes involved in photosynthesis and genes correlated to important structures in photosystem and light-harvesting complexes might be the main reason, particularly, the downregulation of the gene that encodes magnesium chelatase. This would decrease the activity of enzymes involved in chlorophyll synthesis and the downregulation of the key gene that encodes Rubisco, and thereby decreases enzyme activity and the protein content of Rubisco.

Additional key words

biomass greening ion concentrations photosynthetic parameters plant height 

Abbreviations

CDS

predicted conding sequence

Ci

intercellular CO2 concentration

COG

clusters of orthologous groups

DEG

differentially expressed gene

DM

dry mass

E

transpiration rate

FDR

false discovery rate

FM

fresh mass

FPKM

fragments per kilobase of exon model

Fv/Fm

maximum photochemical efficiency of PSII

gs

stomatal conductance

PEPC

phosphoenolpyruvate carboxylase

PN

net photosynthetic rate

PPDK

pyruvate orthophosphate dikinase

RNA-Seq

RNAsequencing

RPKM

reads per KB per million

SNP

simple nucleotide polymorphism

SSR

simple sequence repeat

ΦPSII

actual PSII efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_824_MOESM1_ESM.pdf (217 kb)
Supplementary material, approximately 217 KB.
11099_2018_824_MOESM2_ESM.pdf (195 kb)
Supplementary material, approximately 196 KB.
11099_2018_824_MOESM3_ESM.pdf (196 kb)
Supplementary material, approximately 197 KB.
11099_2018_824_MOESM4_ESM.pdf (180 kb)
Supplementary material, approximately 180 KB.
11099_2018_824_MOESM5_ESM.pdf (163 kb)
Supplementary material, approximately 163 KB.
11099_2018_824_MOESM6_ESM.pdf (193 kb)
Supplementary material, approximately 193 KB.
11099_2018_824_MOESM7_ESM.pdf (139 kb)
Supplementary material, approximately 140 KB.

References

  1. Ahmadiani A., Hosseiny J., Semnanian S. et al.: Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract.–J. Ethnopharmacol. 72: 287–292, 2000.CrossRefPubMedGoogle Scholar
  2. Alshammary S.F., Qian Y.L., Wallner S.J.: Growth response of four turfgrass species to salinity.–Agr. Water Manage. 66: 97–111, 2004.CrossRefGoogle Scholar
  3. Amezketa E.: An integrated methodology for assessing soil salinization, a pre-condition for land desertification.–J. Arid Environ. 67: 594–606, 2006.CrossRefGoogle Scholar
  4. Anderson L.E.: Chloroplast and cytoplasmic enzymes. 3. Pea leaf ribose-5-phosphate isomerases.–BBA-Enzymology 235: 245–249, 1971.Google Scholar
  5. Arnon D.I.: Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris.–Plant Physiol. 24: 1–15, 1949.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ashburner B.M., Ball C.A., Blake J.A. et al.: Gene ontology: tool for the unification of biology.–Nat Genet. 25: 25–29, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bazakos C., Manioudaki M.E., Therios I. et al.: Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress.–PLoS ONE 7: e42931, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brzezowski P., Sharifi M.N., Dent R.M. et al.: Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI 2 cannot substitute for CHLI 1.–J. Exp. Bot. 67: 3925–3938, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen J.B., Zhang F.R., Huang D.R. et al.: Transcriptome analysis of transcription factors in two melon (Cucumis melo L.) cultivars under salt stress.–J. Plant Physiol. 50: 150–158, 2014.Google Scholar
  10. Conesa A., Götz S., García-Gómez J.M. et al.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.–Bioinformatics 21: 3674–6, 2005.CrossRefPubMedGoogle Scholar
  11. Curtis P.S., Läuchli A.: The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress.–Funct. Plant Biol. 13: 553–565., 1986.Google Scholar
  12. Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms.–Trends Plant Sci. 19: 371–379, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Feki K., Quintero J., Khoudi H. et al.: A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis.–Plant Cell Rep. 33: 277–288, 2014.CrossRefPubMedGoogle Scholar
  14. Flexas J., Ribas-Carbó M.., Bota J. et al.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.–New Phytol. 172: 73–82, 2006.CrossRefPubMedGoogle Scholar
  15. Flowers T.J., Colmer T.D.: Plant salt tolerance: adaptation in halophytes.–Ann. Bot.-London 115: 327–331, 2015.CrossRefGoogle Scholar
  16. Green B.R., Pichersky E., Kloppstech K.: Chlorophyll a/bbinding proteins: an extended family.–Trends Biochem. Sci. 16: 181–186, 1991.CrossRefPubMedGoogle Scholar
  17. Heid C.A., Stevens J., Livak K.J. et al.: Real time quantitative PCR.–Genome Res. 6: 986–994, 1996.CrossRefPubMedGoogle Scholar
  18. Kalaitzis P., Bazakos C., Manioudaki M.: Comparative transcriptome analysis of two olive cultivars in response to NaCl stress.–PLoS ONE 7: e42931, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kanehisa M., Goto S., Kawashima S. et al.: The KEGG resource for deciphering the genome.–Nucleic Acids Res. 32: D277–D280, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kerkeb L., Donaire J.P., Rodríguez-Rosales M.P.: Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl.–Physiol. Plantarum 111: 483–490, 2001.CrossRefGoogle Scholar
  21. Khavari-Nejad R.A., Mostofi Y.: Effects of NaCl on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars.–Photosynthetica 35: 151–154, 1998.CrossRefGoogle Scholar
  22. Khodarahmpour Z.: Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage.–Afr. J. Biotechnol. 11: 298–304, 2001.Google Scholar
  23. Knowles J.R., Albery W.J.: Perfection in enzyme catalysis: the energetics of triosephosphate isomerase.–Accounts Chem. Res. 10: 105–111, 1977.CrossRefGoogle Scholar
  24. Liu X.X., Qi M.Y., Gao Q.J. et al.: [Effects of Na2SO4 stress on net photosynthesis rate and other physiological indexes of Elaeagnus Mooraroftii.]–Xinjiang Agr. Sci. 42: 102–106, 2005. [In Chinese]Google Scholar
  25. Liu Z.X., Zhang H.X., Yang X.Y. et al.: Effects of Na2SO4 stress on growth and photosynthetic physiology of Elaeagnus angustifolia seedlings.–For. Res. 27: 186–194, 2014.Google Scholar
  26. Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.–Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  27. Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  28. Pagano E., Maddonni G.A.: Intra-specific competition in maize: Early established hierarchies differ in plant growth and biomass partitioning to the ear around silking.–Field Crop. Res. 101: 306–320, 2007.CrossRefGoogle Scholar
  29. Song J., Ding X., Feng G. et al.: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions.–New Phytol. 171: 357–366, 2006.CrossRefPubMedGoogle Scholar
  30. Sui N., Yang Z., Liu M.L., Wang B.: Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.–BMC Genomics 16: 2–18, 2015.CrossRefGoogle Scholar
  31. Sun W., Xu X., Zhu H. et al.: Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a saltsensitive tomato cultivar.–Plant Cell Physiol. 51: 997–1006, 2010.CrossRefPubMedGoogle Scholar
  32. van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosynth. Res. 25: 147–50, 1990.CrossRefPubMedGoogle Scholar
  33. Whitney S.M., Houtz R.L., Alonso H.: Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco.–Plant Physiol. 155: 27–35, 2011.CrossRefPubMedGoogle Scholar
  34. Xiao H.D., Chen C.S., Xu Y. et al.: Cloning and expression analysis of the chloroplast fructose-1,6-bisphosphatase gene from Pyropia haitanensis.–Acta Oceanol. Sin. 33: 92–100, 2014.CrossRefGoogle Scholar
  35. Zhang H., Li Z., Yoo J.H. et al.: Rice Chlorina-1 and Chlorina-9 encode Chl D and Chl L subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development.–Plant Mol. Biol. 62: 325–337, 2006.CrossRefPubMedGoogle Scholar
  36. Zhao K., Fan H., Zhou S., Song J.: Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress.–Plant Sci. 165: 837–844, 2003.CrossRefGoogle Scholar
  37. Zhu J.K.: Plant salt tolerance.–Trends Plant Sci. 6: 66–71, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Plant Stress Research, College of Life ScienceShandong Normal UniversityShandongChina

Personalised recommendations