Advertisement

Photosynthetica

, Volume 56, Issue 4, pp 1069–1080 | Cite as

Photosynthetic, physiological and biochemical events associated with polyethylene glycol-mediated osmotic stress tolerance in taro (Colocasia esculenta L. Schott)

  • M. R. Sahoo
  • M. Dasgupta
  • P. C. Kole
  • A. Mukherjee
Original paper

Abstract

Six genotypes of taro (Colocasia esculenta L. Schott) were evaluated under in vitro and in vivo polyethylene glycol (PEG–6000)-mediated osmotic stress conditions. A significant variation in growth response was observed among the taro genotypes under in vitro-induced stress conditions. In vivo results indicated a significant effect of osmotic stress on photosynthetic parameters, such as net photosynthetic rate, transpiration rate, stomatal conductance, stomatal resistance, internal CO2 concentration, carboxylation efficiency, and transpiration efficiency on the tested genotypes at the tuberization stage. Lesser variations in photosynthesis and higher accumulation of proline, phenols, and antioxidative enzymes, namely, superoxide dismutase and guaiacol peroxidase, were associated with yield maintenance under osmotic stress conditions. The genotypes DP–89, IGCOL–4, and Ramhipur showed a higher degree of tolerance towards osmotic stress with a minimum variation in the studied parameters. These genotypes could be lines of interest for intensification of breeding strategies to develop drought-tolerant plants.

Additional key words

antioxidative enzymes osmotic stress photosynthesis physiology polyethylene glycol taro 

Abbreviations

BA

6-benzyladenine

Ci

intercellular CO2 concentration

CE

carboxylation efficiency

Chl

chlorophyll

CSI

chlorophyll stability index

E

transpiration rate

EDTA

ethylene diamine tetraacetic acid

GA3

gibberellic acid

GPX

guaiacol peroxidase

gs

stomatal conductance

NAA

α–naphthalene acetic acid

NBT

nitroblue tetrazolium

PAGE

polyacrylamide gel electrophoresis

PN

photosynthetic rate

ROS

reactive oxygen species

RS

reducing sugar

Rs

stomatal resistance

RWC

relative water content

SOD

superoxide dismutase

TE

transpiration efficiency

TSS

total soluble sugar

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albiski F., Najla S., Sanoubar R. et al.: In vitro screening of potato lines for drought tolerance.–Physiol. Mol. Biol. Plants 18: 315–321, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anjum S.A., Xie X., Wang L. et al.: Morphological, physiological and biochemical responses of plants to drought stress.–Afr. J. Agric. Res. 6: 2026–2032, 2011.Google Scholar
  3. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  4. Biradar R.S., Venkateswaralu T., Hrishi N.: Leaf area estimation in Colocasia.–J. Root Crops. 4: 51–53, 1978.Google Scholar
  5. Blum A.: Drought resistance, water-use efficiency, and yield potential–are they compatible, dissonant, or mutually exclusive?–Aust. J. Agric. Res. 56: 1159–1168, 2005.CrossRefGoogle Scholar
  6. Blum A.: Effective use of water (EUW) and not water–use efficiency (WUE) is the target of crop yield improvement under drought stress.–Field Crops Res. 112: 119–123, 2009.CrossRefGoogle Scholar
  7. Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein–dye binding.–Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  8. Chakraborty U., Pradhan B.: Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation.–Braz. J. Plant Physiol. 24: 117–130, 2012.CrossRefGoogle Scholar
  9. Chandra A., Pathak P.S., Bhatt R.K. et al.: Variation in drought tolerance of different Stylosanthes accessions.–Biol. Plantarum 48: 457–460, 2004.CrossRefGoogle Scholar
  10. Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant responses to drought–from genes to the whole plant.–Funct. Plant Biol. 30: 239–264, 2003CrossRefGoogle Scholar
  11. Chen K, Arora R.: Priming memory invokes seed stresstolerance.–Environ. Exp. Bot. 94: 33–45, 2013.CrossRefGoogle Scholar
  12. Chen K., Fessehaie A., Arora R.: Selection of reference genes for normalizing gene expression during seed priming and germination using qPCR in Zea mays and Spinacia oleracea.–Plant Mol. Biol. Rep. 30: 478–487, 2012.CrossRefGoogle Scholar
  13. Dasgupta M., Sahoo M.R., Kole P.C. et al.: Evaluation of orangefleshed sweet potato (Ipomoea batatas L.) genotypes for salt tolerance through shoot apex culture under in vitro NaCl mediated salinity stress conditions.–Plant Cell Tiss. Org. 94: 161, 2008.CrossRefGoogle Scholar
  14. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management.–Agron. Sustain. Dev. 29: 185–212, 2009.CrossRefGoogle Scholar
  15. Flexas J., Bota J., Escalona J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations.–Funct. Plant Biol. 29: 461–471, 2002.CrossRefGoogle Scholar
  16. Gharineh M.H., Karmollachaab A.: Effect of silicon on physiological characteristics wheat growth under water-deficit stress induced by PEG.–Int. J. Agron. Plant Prod. 4: 1543–1548, 2013.Google Scholar
  17. Ghorbanli M., Gafarabad M., Amirkian T. et al.: Investigation of proline, total protein, chlorophyll, ascorbate and dehydro–ascorbate changes under drought stress in Akria and Mobil tomato cultivars.–Iran J. Plant Physiol. 3: 651–658, 2012.Google Scholar
  18. Giannopolitis C.N., Ries S.K.: Superoxide dismutases. I. Occurrence in higher plants.–Plant Physiol. 59: 309–314, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.–Plant Physiol. Bioch. 48: 909–930, 2010.CrossRefGoogle Scholar
  20. Gomez J.M., Jimenez A., Olmos E. et al.: Location and effects of long–term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts.–J. Exp. Bot. 55: 119–130, 2004.CrossRefPubMedGoogle Scholar
  21. Hayat S., Hayat Q., Alyemeni M.N. et al.: Role of proline under changing environments.–Plant Signal Behav. 7: 1456–1466, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hussain M., Malik M.A., Farooq M. et al.: Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower.–J. Agron. Crop Sci. 194: 193–199, 2008.CrossRefGoogle Scholar
  23. Khanna-Chopra R., Selote D.S.: Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions.–Environ. Exp. Bot. 60: 276–283, 2007.CrossRefGoogle Scholar
  24. Kumar R.R., Karajol K., Naik G.R.: Effect of polyethylene glycol induced water stress on physiological and biochemical responses in Pigeonpea (Cajanus cajan L. Mill sp.).–Rec. Res. Sci. Technol. 3: 148–152, 2011.Google Scholar
  25. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.–Nature 227: 680–685, 1970.CrossRefPubMedGoogle Scholar
  26. Legay S., Lefèvre I., Lamoureux D. et al.: Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.).–Funct. Integr. Genomic. 11: 275–291, 2011.CrossRefGoogle Scholar
  27. Levitt J.: Responses of Plants to Environmental Stresses, Vol. II. Water, Radiation, Salt and Others Stresses. Pp. 395–434. Academic Press, New York 1980.Google Scholar
  28. Li X., Liu F.: Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis.–In: Hossain M.A., Wani S.H., Bhattacharjee S. et al. (ed.): Drought Stress Tolerance in Plants, vol. 1. Physiology and Biochemistry. Pp. 17–44. Springer, Basel 2016.CrossRefGoogle Scholar
  29. Li X., Topbjerg H.B., Jiang D. et al.: Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage.–Plant Soil 393: 307–318, 2015.CrossRefGoogle Scholar
  30. Liu F.L., Jensen C.R., Shahanzari A. et al.: ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying.–Plant Sci. 168: 831–836, 2005.CrossRefGoogle Scholar
  31. Luo H.H., Zhang Y.L., Zhang W.F.: Effect of water stress and re watering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch.–Photosynthetica 54: 65–73, 2016.CrossRefGoogle Scholar
  32. Mabhaudhi T., Modi A.T., Beletse Y.G.: Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rain shelter.–Agr. Water Manage. 121: 102–112, 2013.CrossRefGoogle Scholar
  33. Mabhaudhi T., Modi A.T.: Drought tolerance of selected South African taro (Colocasia esculents L. Schott) landraces.–Exp. Agr. 51: 451–466, 2015.CrossRefGoogle Scholar
  34. Mohan M.M., Narayanan S.L., Ibrahim S.M.: Chlorophyll stability index (CSI): its impact on salt tolerance in rice.–Int. Rice Res. Notes 25: 38–39, 2000.Google Scholar
  35. Murashige T., Skoog F.: A revised medium for rapid growth and bioassay with tobacco tissue culture.–Physiol. Plantarum 15: 473–497, 1962.CrossRefGoogle Scholar
  36. Muscolo A., Junker A., Klukas C. et al.: Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions.–J. Exp. Bot. 66: 5467–5480, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nelson N.: A photometric adaptation of the Somogyi’s method for the determination of glucose.–J. Biol. Chem. 153: 375–380, 1944.Google Scholar
  38. Obidiegwu J.E., Bryan G.J., Jones H.G. et al.: Coping with drought: stress and adaptive responses in potato and perspectives for improvement.–Front. Plant Sci. 6: 542, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Perez N.C.M., Espinosa R.G., Castaneda C.L. et al.: Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress.–Physiol. Mol. Plant P. 60: 185–195, 2002.CrossRefGoogle Scholar
  40. Pérez-Clemente R.M., Vives V., Zandalinas S.I. et al.: Biotechnological approaches to study plant responses to stress.–Biomed. Res. Int. 2013: 654120, 2013.CrossRefPubMedGoogle Scholar
  41. Ramírez D.A., Rolando J.L., Yactayo W. et al.: Improving potato drought tolerance through the induction of long-term water stress memory.–Plant Sci. 238: 26–32, 2015.CrossRefPubMedGoogle Scholar
  42. Ravi V., Chowdhury S.R.: Physiological response of taro to moisture stress.–J. Root Crops 23: 63–66, 1997.Google Scholar
  43. Roe J.H.: The determination of sugar in blood and spinal fluid with anthrone reagent.–J. Biol. Chem. 212: 335–343, 1955.PubMedGoogle Scholar
  44. Sahoo M.R., Dasgupta M., Kole P.C. et al.: Antioxidative enzymes and isoenzymes analysis of taro genotypes and their implications in Phytophthora blight disease resistance.–Mycopathologia 163: 241–248, 2007.CrossRefPubMedGoogle Scholar
  45. Sahoo M.R., Dasgupta M., Mukherjee A.: Effect of in vitro and in vivo induction of polyethylene glycol-mediated osmotic stress on hybrid taro (Colocasia esculenta L. Schott.).–Ann. Trop. Res. 28: 1–11, 2006b.Google Scholar
  46. Sahoo M.R., Kole P.C., Dasgupta M. et al.: Screening and selection of Colocasia for leaf blight, drought and salinity.–Curr. Agr. Res. 19: 14–19, 2006a.Google Scholar
  47. Singh D.P.: Water Deficit Stress in Stress Physiology. Pp. 64–79. New Age Publishers, New Delhi 2003.Google Scholar
  48. Sourour A., Afef O., Mounir R. et al.: A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress.–Int. J. Eng. Sci. 6: 1–4, 2017.CrossRefGoogle Scholar
  49. Sunitha S., Ravi V., George J. et al.: Aroids and water relations: An overview.–J. Root Crops 39: 10–21, 2013.Google Scholar
  50. Suseela V., Tharayil N., Xing B. et al.: Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra.–Glob. Change Biol. 21: 4177–4195, 2015.CrossRefGoogle Scholar
  51. Tombesi S., Nardini A., Frioni T. et al.: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine.–Sci. Rep. 5: 12449, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tukey J.W.: Comparing individual means in the analysis of variance.–Biometrics 5: 99–114, 1949.CrossRefPubMedGoogle Scholar
  53. Urbanek H., Kuzniak-Gebarowska E., Herka K.: Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase.–Acta Physiol. Plant. 13: 43–50, 1991.Google Scholar
  54. Wei L., Wang L., Yang Y. et al.: Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate–glutathione biosynthesis.–Front. Plant Sci. 30: 458, 2015.Google Scholar
  55. Yue B., Xue W., Xiong L. et al.: Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance.–Genetics 172: 1213–1228, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zieslin N., Ben-Zaken R.: Peroxidase activity and presence of phenolic substances in peduncles of rose flowers.–Plant Physiol. Bioch. 31: 239–247, 1993.Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • M. R. Sahoo
    • 1
    • 2
  • M. Dasgupta
    • 1
    • 2
  • P. C. Kole
    • 3
  • A. Mukherjee
    • 4
  1. 1.ICAR Research Complex for NEH Region, LamphelpatImphal, ManipurIndia
  2. 2.University of TennesseeKnoxvilleUSA
  3. 3.Department of Crop Improvement, Horticulture and Agricultural BotanyInstitute of Agriculture, Visva BharatiSriniketanIndia
  4. 4.Regional Centre of Central Tuber Crops Research InstituteBhubaneswarIndia

Personalised recommendations