Skip to main content

Advertisement

Log in

Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants

  • Original paper
  • Published:
Photosynthetica

Abstract

Silicon is known to improve resistance against salinity stress in maize crop. This study was conducted to evaluate the influence of silicon application on growth and salt resistance in maize. Seeds of two maize genotypes (salt-sensitive ‘EV 1089’ and salt-tolerant ‘Syngenta 8441’) were grown in pots containing 0 and 2 mM Si with and without 50 mM NaCl. After detailed investigation of ion concentrations in different maize organs, both genotypes were further selected in hydroponic experiment on basis of their contrasting response to salinity stress. In the second experiment, pre-germinated seedlings were transplanted into nutrient solution with 0 and 60 mM NaCl with and without 2 mM Si. Both genotypes differed significantly in their response to salinity. Silicon addition alleviated both osmotic and oxidative stress in maize crop by improving the performance of defensive machinery under salinity stress. Silicon application also improved the water-use efficiency in both tested genotypes under both normal and salinity stress conditions. In conclusion, this study implies that the silicon-treated maize plants had better chance to survive under salinity conditions and their photosynthetic and biochemical apparatus was working far better than that of silicon-non-treated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

BSA:

bovine serum albumin

Chl:

chlorophyll

CAT:

catalase

E :

transpiration rate

gs:

stomatal conductance

NBT:

nitroblue tetrazolium

P N :

photosynthetic rate

SOD:

superoxide dismutase

WUE:

water-use efficiency

References

  • Abbas T., Balal R.M., Shahid M.A. et al.: Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism.–Acta. Physiol. Plant. 37: 1–15, 2015.

    Article  CAS  Google Scholar 

  • Acosta-Motos J.R., Diaz-Vivancos P., Álvarez S. et al.: Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery.–Planta 242: 829–846, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Allison L.E., Moodie C.D.: Carbonate.–In: Black C.A. (ed.): Methods Soil Analysis. Part 2: Chemical and Microbiological Properties. Pp. 1379–1396. Am. Soc. Agron., Madison 1965.

    Google Scholar 

  • Ahmad M., Zahir Z.A., Khalid M. et al.: Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields.–Plant Physiol. Bioch. 63: 170–176, 2013.

    Article  CAS  Google Scholar 

  • Antolín M.C., Sánchez-Díaz M.: Effects of temporary drought on photosynthesis of alfalfa plants.–J. Exp. Bot. 44: 1341–1349, 1993.

    Article  Google Scholar 

  • Ashraf M.A., Ashraf M., Ali Q.: Response of two genetically diverse wheat cultivars to salinity stress at different growth stages: leaf lipid peroxidation and phenolic contents.–Pak. J. Bot. 42: 559–565, 2010.

    CAS  Google Scholar 

  • Bhutta W.M., Hanif M.: Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.).–Acta Agr. Scand. BS. P. 60: 256–261, 2010.

    CAS  Google Scholar 

  • Bayer W.F., Fridovich I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.–Anal. Biochem. 161: 559–566, 1987.

    Article  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.–Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I., Marschner H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.–Plant Physiol. 98: 1222–1227, 1992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen A., Cao B., Qi L. et al.: Silicon-moderated K-deficiencyinduced leaf chlorosis by decreasing putrescine accumulation in sorghum.–Ann. Bot.-London 118: 305–315, 2016.

    Article  CAS  Google Scholar 

  • Cooke J., Leishman M.R.: Is plant ecology more siliceous than we realise?–Trends Plant Sci. 16: 61–68, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Gattullo C.E., Allegretta I., Medici L. et al.: Silicon dynamics in the rhizosphere: connections with iron mobilization.–J. Plant Nutr. Soil Sci. 179: 409–417. 2016.

    Article  CAS  Google Scholar 

  • Gee G.W., Bauder J.W.: Particle-size analysis.–In: Klute A. (ed.): Methods Soil Analysis. Part 1: Physical and Mineralogical Methods. Agron. Monogr. 9. Pp. 383–409. Soil Sci. Soc. Am., Madison 1986.

    Google Scholar 

  • Jones J.R.J., Case V.W.: Sampling, handling, and analysing plant tissue samples.–In: Westerman R.L. (ed.): Soil Testing and Plant Analysis, 3rd ed. Pp. 389–428. Soil Sci. Soc. Am., Madison 1990.

    Google Scholar 

  • Kafi M., Rahimi Z.: Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portula caoleracea L.).–Soil Sci. Plant Nutr. 57: 341–347, 2011.

    Article  CAS  Google Scholar 

  • Khan W.U.D., Aziz T., Hussain I. et al.: Silicon: A beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress.–Arch. Agron. Soil Sci. 63: 599–611, 2016a.

    Article  CAS  Google Scholar 

  • Khan W.U.D., Aziz T., Maqsood M.A. et al.: Silicon: A beneficial nutrient under salt stress, its uptake mechanism and mode of action.–In: Hakeem K.R., Akhtar J., Sabir M. (ed.): Soil Science: Agricultural and Environmental Prospective. Pp. 287–301. Springer, Cham 2016b.

    Chapter  Google Scholar 

  • Khan W.U.D., Aziz T., Warraich E.A. Khalid M.: Silicon application improves germination and vegetative growth in maize grown under salt stress.–Pak. J. Agr. Sci. 52: 937–944, 2015.

    Google Scholar 

  • Khatoon T.K., Hussain A., Majeed K. et al.: Morphological variations in maize (Zea mays L.) under different levels of NaCl at germinating stage.–World Appl. Sci. J. 8: 1294–1297, 2010.

    CAS  Google Scholar 

  • Khayatnezhad M., Gholamin R., Jamaati-e-Somarin S.H., Zabihi-e-Mahmoodabad R.: Effects of peg stress on corn cultivars (Zea mays L.) at germination stage.–World Appl. Sci. J. 11: 504–506, 2010.

    Google Scholar 

  • Liang Y.C., Chen Q., Liu Q. et al.: Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).–J. Plant Physiol. 160: 1157–1164, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Liang Y.C., Zhang W.Q., Chen J., Ding R.: Effect of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt stressed barley (Hordeum vulgare L.).–Environ. Exp. Bot. 53: 29–37, 2005.

    Article  CAS  Google Scholar 

  • Liu P., Yin L., Wang S. et al.: Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L.–Environ. Exp. Bot. 111: 42–51, 2015.

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E., Andrades-Moreno L., Davy A.J.: Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.–Plant Physiol. Bioch. 63: 115–121, 2013.

    Article  CAS  Google Scholar 

  • Morales SG., Trejo-Téllez LI., Merino F.C.G. et al.: Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress.–Acta Sci.-Agron. 34: 317–324, 2012.

    Article  CAS  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nelson D.W., Sommers L.E.: Total carbon, organic carbon and organic matter.–In: Black C.A. (ed.): Methods Soil Analysis. Part 2: Chemical and Microbiological Properties. Agronomia Mongr. 9. Pp. 570–571. Soil Sci. Soc. Am., Madison 1982.

    Google Scholar 

  • Sabater B., Rodriquez M.I.: Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels.–Physiol. Plantarum 43: 274–276, 1978.

    Article  CAS  Google Scholar 

  • Singleton V.L., Orthofer R., Lamuela-Raventós R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent.–Methods Enzymol. 299: 152–178, 1999.

    Article  CAS  Google Scholar 

  • Steel R.G.D., Torrie J.H., Dickey D.A.: Principles and Procedures of Statistics. A Bio-Metrical Approach, 3rd ed. Pp. 172–177. McGraw Hill Book Co., Inc., New York 1997.

    Google Scholar 

  • Strain H.H., Svec W.A.: Extraction, separation, estimation and isolation of chlorophylls.–In: Vernon L.P., Seely G.R. (ed.): The Chlorophylls. Pp. 21–66. Academic Press, New York 1966.

    Chapter  Google Scholar 

  • Tahir M.A., Aziz T., Rahmatullah.: Silicon induced growth and yield enhancement in two wheat genotypes differing in salinity tolerance.–Commun. Soil Sci. Plan. 42: 395–407, 2011.

    Article  CAS  Google Scholar 

  • Tahir M.A., Aziz T., Farooq M., Sarwar G.: Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes.–Arch. Agron. Soil Sci. 58: 247–256, 2012.

    Article  CAS  Google Scholar 

  • Tuna A.L., Kaya C., Higgs D. et al.: Silicon improves salinity tolerance in wheat plants.–Environ. Exp. Bot. 62: 10–16, 2008.

    Article  CAS  Google Scholar 

  • Waskiewicz A., Muzolf-Panek M., Golinski P.: Phenolic content changes in plants under salt stress.–In: Ahmed P., Azooz M.M., Parsad M.N.V. (ed.): Ecophysiology and Responses of Plants under Salt Stress. Pp. 283–314. Springer, New York–Heidelberg–Dordrecht–London 2013.

    Chapter  Google Scholar 

  • Wang S., Liu P., Chen D. et al.: Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber.–Front. Plant Sci. 6: 759, 2015.

    PubMed  PubMed Central  Google Scholar 

  • Yin L., Wang S., Tanaka K. et al.: Silicon-mediated changes in polyamines participates in silicon-induced salt tolerance in Sorghum bicolor L.–Plant Cell Environ. 39: 245–258, 2016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. U. D. Khan.

Additional information

Acknowledgements: The authors highly acknowledge the Higher Education Commission (HEC) of Pakistan for financial assistance under NRPU project NO. 1439 awarded to Tariq Aziz and for HEC Indigenous Fellowship to Waqas-ud-Din Khan (Pin# 112- 23918-2AV1-356).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W.U.D., Aziz, T., Maqsood, M.A. et al. Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica 56, 1047–1057 (2018). https://doi.org/10.1007/s11099-018-0812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0812-x

Additional key words

Navigation