, Volume 56, Issue 4, pp 1047–1057 | Cite as

Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants

  • W. U. D. Khan
  • T. Aziz
  • M. A. Maqsood
  • M. Farooq
  • Y. Abdullah
  • P. M. A. Ramzani
  • H. M. Bilal
Original paper


Silicon is known to improve resistance against salinity stress in maize crop. This study was conducted to evaluate the influence of silicon application on growth and salt resistance in maize. Seeds of two maize genotypes (salt-sensitive ‘EV 1089’ and salt-tolerant ‘Syngenta 8441’) were grown in pots containing 0 and 2 mM Si with and without 50 mM NaCl. After detailed investigation of ion concentrations in different maize organs, both genotypes were further selected in hydroponic experiment on basis of their contrasting response to salinity stress. In the second experiment, pre-germinated seedlings were transplanted into nutrient solution with 0 and 60 mM NaCl with and without 2 mM Si. Both genotypes differed significantly in their response to salinity. Silicon addition alleviated both osmotic and oxidative stress in maize crop by improving the performance of defensive machinery under salinity stress. Silicon application also improved the water-use efficiency in both tested genotypes under both normal and salinity stress conditions. In conclusion, this study implies that the silicon-treated maize plants had better chance to survive under salinity conditions and their photosynthetic and biochemical apparatus was working far better than that of silicon-non-treated plants.

Additional key words

chlorophyll photosynthetic rate total phenolics 



ascorbate peroxidase


bovine serum albumin






transpiration rate


stomatal conductance


nitroblue tetrazolium


photosynthetic rate


superoxide dismutase


water-use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas T., Balal R.M., Shahid M.A. et al.: Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism.–Acta. Physiol. Plant. 37: 1–15, 2015.CrossRefGoogle Scholar
  2. Acosta-Motos J.R., Diaz-Vivancos P., Álvarez S. et al.: Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery.–Planta 242: 829–846, 2015.CrossRefPubMedGoogle Scholar
  3. Allison L.E., Moodie C.D.: Carbonate.–In: Black C.A. (ed.): Methods Soil Analysis. Part 2: Chemical and Microbiological Properties. Pp. 1379–1396. Am. Soc. Agron., Madison 1965.Google Scholar
  4. Ahmad M., Zahir Z.A., Khalid M. et al.: Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields.–Plant Physiol. Bioch. 63: 170–176, 2013.CrossRefGoogle Scholar
  5. Antolín M.C., Sánchez-Díaz M.: Effects of temporary drought on photosynthesis of alfalfa plants.–J. Exp. Bot. 44: 1341–1349, 1993.CrossRefGoogle Scholar
  6. Ashraf M.A., Ashraf M., Ali Q.: Response of two genetically diverse wheat cultivars to salinity stress at different growth stages: leaf lipid peroxidation and phenolic contents.–Pak. J. Bot. 42: 559–565, 2010.Google Scholar
  7. Bhutta W.M., Hanif M.: Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.).–Acta Agr. Scand. BS. P. 60: 256–261, 2010.Google Scholar
  8. Bayer W.F., Fridovich I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.–Anal. Biochem. 161: 559–566, 1987.CrossRefGoogle Scholar
  9. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.–Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  10. Cakmak I., Marschner H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.–Plant Physiol. 98: 1222–1227, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen A., Cao B., Qi L. et al.: Silicon-moderated K-deficiencyinduced leaf chlorosis by decreasing putrescine accumulation in sorghum.–Ann. Bot.-London 118: 305–315, 2016.CrossRefGoogle Scholar
  12. Cooke J., Leishman M.R.: Is plant ecology more siliceous than we realise?–Trends Plant Sci. 16: 61–68, 2011.CrossRefPubMedGoogle Scholar
  13. Gattullo C.E., Allegretta I., Medici L. et al.: Silicon dynamics in the rhizosphere: connections with iron mobilization.–J. Plant Nutr. Soil Sci. 179: 409–417. 2016.CrossRefGoogle Scholar
  14. Gee G.W., Bauder J.W.: Particle-size analysis.–In: Klute A. (ed.): Methods Soil Analysis. Part 1: Physical and Mineralogical Methods. Agron. Monogr. 9. Pp. 383–409. Soil Sci. Soc. Am., Madison 1986.Google Scholar
  15. Jones J.R.J., Case V.W.: Sampling, handling, and analysing plant tissue samples.–In: Westerman R.L. (ed.): Soil Testing and Plant Analysis, 3rd ed. Pp. 389–428. Soil Sci. Soc. Am., Madison 1990.Google Scholar
  16. Kafi M., Rahimi Z.: Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portula caoleracea L.).–Soil Sci. Plant Nutr. 57: 341–347, 2011.CrossRefGoogle Scholar
  17. Khan W.U.D., Aziz T., Hussain I. et al.: Silicon: A beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress.–Arch. Agron. Soil Sci. 63: 599–611, 2016a.CrossRefGoogle Scholar
  18. Khan W.U.D., Aziz T., Maqsood M.A. et al.: Silicon: A beneficial nutrient under salt stress, its uptake mechanism and mode of action.–In: Hakeem K.R., Akhtar J., Sabir M. (ed.): Soil Science: Agricultural and Environmental Prospective. Pp. 287–301. Springer, Cham 2016b.CrossRefGoogle Scholar
  19. Khan W.U.D., Aziz T., Warraich E.A. Khalid M.: Silicon application improves germination and vegetative growth in maize grown under salt stress.–Pak. J. Agr. Sci. 52: 937–944, 2015.Google Scholar
  20. Khatoon T.K., Hussain A., Majeed K. et al.: Morphological variations in maize (Zea mays L.) under different levels of NaCl at germinating stage.–World Appl. Sci. J. 8: 1294–1297, 2010.Google Scholar
  21. Khayatnezhad M., Gholamin R., Jamaati-e-Somarin S.H., Zabihi-e-Mahmoodabad R.: Effects of peg stress on corn cultivars (Zea mays L.) at germination stage.–World Appl. Sci. J. 11: 504–506, 2010.Google Scholar
  22. Liang Y.C., Chen Q., Liu Q. et al.: Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).–J. Plant Physiol. 160: 1157–1164, 2003.CrossRefPubMedGoogle Scholar
  23. Liang Y.C., Zhang W.Q., Chen J., Ding R.: Effect of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt stressed barley (Hordeum vulgare L.).–Environ. Exp. Bot. 53: 29–37, 2005.CrossRefGoogle Scholar
  24. Liu P., Yin L., Wang S. et al.: Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L.–Environ. Exp. Bot. 111: 42–51, 2015.CrossRefGoogle Scholar
  25. Mateos-Naranjo E., Andrades-Moreno L., Davy A.J.: Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.–Plant Physiol. Bioch. 63: 115–121, 2013.CrossRefGoogle Scholar
  26. Morales SG., Trejo-Téllez LI., Merino F.C.G. et al.: Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress.–Acta Sci.-Agron. 34: 317–324, 2012.CrossRefGoogle Scholar
  27. Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  28. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  29. Nelson D.W., Sommers L.E.: Total carbon, organic carbon and organic matter.–In: Black C.A. (ed.): Methods Soil Analysis. Part 2: Chemical and Microbiological Properties. Agronomia Mongr. 9. Pp. 570–571. Soil Sci. Soc. Am., Madison 1982.Google Scholar
  30. Sabater B., Rodriquez M.I.: Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels.–Physiol. Plantarum 43: 274–276, 1978.CrossRefGoogle Scholar
  31. Singleton V.L., Orthofer R., Lamuela-Raventós R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent.–Methods Enzymol. 299: 152–178, 1999.CrossRefGoogle Scholar
  32. Steel R.G.D., Torrie J.H., Dickey D.A.: Principles and Procedures of Statistics. A Bio-Metrical Approach, 3rd ed. Pp. 172–177. McGraw Hill Book Co., Inc., New York 1997.Google Scholar
  33. Strain H.H., Svec W.A.: Extraction, separation, estimation and isolation of chlorophylls.–In: Vernon L.P., Seely G.R. (ed.): The Chlorophylls. Pp. 21–66. Academic Press, New York 1966.CrossRefGoogle Scholar
  34. Tahir M.A., Aziz T., Rahmatullah.: Silicon induced growth and yield enhancement in two wheat genotypes differing in salinity tolerance.–Commun. Soil Sci. Plan. 42: 395–407, 2011.CrossRefGoogle Scholar
  35. Tahir M.A., Aziz T., Farooq M., Sarwar G.: Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes.–Arch. Agron. Soil Sci. 58: 247–256, 2012.CrossRefGoogle Scholar
  36. Tuna A.L., Kaya C., Higgs D. et al.: Silicon improves salinity tolerance in wheat plants.–Environ. Exp. Bot. 62: 10–16, 2008.CrossRefGoogle Scholar
  37. Waskiewicz A., Muzolf-Panek M., Golinski P.: Phenolic content changes in plants under salt stress.–In: Ahmed P., Azooz M.M., Parsad M.N.V. (ed.): Ecophysiology and Responses of Plants under Salt Stress. Pp. 283–314. Springer, New York–Heidelberg–Dordrecht–London 2013.CrossRefGoogle Scholar
  38. Wang S., Liu P., Chen D. et al.: Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber.–Front. Plant Sci. 6: 759, 2015.PubMedPubMedCentralGoogle Scholar
  39. Yin L., Wang S., Tanaka K. et al.: Silicon-mediated changes in polyamines participates in silicon-induced salt tolerance in Sorghum bicolor L.–Plant Cell Environ. 39: 245–258, 2016.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • W. U. D. Khan
    • 1
  • T. Aziz
    • 2
  • M. A. Maqsood
    • 2
  • M. Farooq
    • 3
  • Y. Abdullah
    • 1
  • P. M. A. Ramzani
    • 4
  • H. M. Bilal
    • 2
  1. 1.Sustainable Development Study CentreGovernment College UniversityLahorePakistan
  2. 2.Institute of Soil and Environmental SciencesUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  4. 4.Cholistan Institute of Desert StudiesThe Islamia University of BahawalpurBahawalpurPakistan

Personalised recommendations