Chlorophyll fluorescence and gas exchange measurements in field research: an ecological case study

  • S. F. Bucher
  • M. Bernhardt–Römermann
  • C. Römermann
Article
  • 22 Downloads

Abstract

We tested whether cheap and quick chlorophyll (Chl) fluorescence can be used in ecophysiological field studies as proxies for gas-exchange measurements. We measured net photosynthetic rate at saturating irradiance and ambient atmospheric CO2 concentrations (PNsat), maximum carboxylation rate (Vcmax), maximum quantum yield of PSII (Fv/Fm), the performance index (PIabs), leaf nitrogen (Narea), and carbon isotope discrimination (Δ13C) within four herbaceous species along two elevational gradients. We analysed the relationship between Chl fluorescence and gas-exchange parameters and their link to indirect assessment of plant performance via ecophysiological traits. Fv/Fm showed no relationship to PNsat and only weak relationships to Vcmax. PIabs was positively related to PNsat and Vcmax. PIabs, PNsat, and Vcmax were positively associated with Narea and negatively to Δ13C, whereas Fv/Fm showed no relationship to Narea and a positive to Δ13C. Thus, PIabs might be suitable to characterize the photosynthetic activity when aiming on large numbers of samples.

Additional keywords

Aposeris foetida carbon isotope discrimination Knautia dipsacifolia leaf nitrogen Mercurialis perennis Trifolium pratense 

Abbreviations

Chl

chlorophyll

Fv/Fm

maximum quantum yield of PSII

Narea

area based leaf nitrogen content

PIabs

absorption based performance index

PNsat

net photosynthetic rate at saturating irradiance and ambient atmospheric CO2 concentrations

Vcmax

maximum carboxylation rate

Δ13C

carbon isotope discrimination

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_809_MOESM1_ESM.pdf (257 kb)
Supplementary material, approximately 731 KB.
11099_2018_809_MOESM2_ESM.pdf (241 kb)
Supplementary material, approximately 731 KB.
11099_2018_809_MOESM3_ESM.pdf (232 kb)
Supplementary material, approximately 731 KB.

References

  1. Adams III W.W., Zarter C.R., Ebbert V. et al.: Photoprotective strategies of overwintering evergreens. — BioScience 54: 41–49, 2004.CrossRefGoogle Scholar
  2. Bartoń K.: Multi-Model Inference. R Package Version 1.15. 6 2016.Google Scholar
  3. Bates D., Mächler M., Bolker B. et al.: Fitting linear mixedeffects models using Ime4. — J. Stat. Softw. 67: 1–48, 2015.CrossRefGoogle Scholar
  4. Bernacchi C., Singsaas E., Pimentel C. et al.: Improved temperature response functions for models of Rubisco-limited photosynthesis. — Plant Cell Environ. 24: 253–259, 2001.CrossRefGoogle Scholar
  5. Boardman N.K.: Comparative photosynthesis of sun and shade plants. — Annu. Rev. Plant Physiol. 28: 355–377, 1977.CrossRefGoogle Scholar
  6. Bond B.J., Farnsworth B.T., Coulombe R.A. et al.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. — Oecologia 120: 183–192, 1999.CrossRefPubMedGoogle Scholar
  7. Bucher S.F., Auerswald K., Grün-Wenzel C. et al.: Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate. — Flora 229: 107–115, 2017.CrossRefGoogle Scholar
  8. Bucher S.F., Auerswald K., Tautenhahn S. et al.: Inter- and intraspecific variation in stomatal pore area index along elevational gradients and its relation to leaf functional traits. — Plant Ecol. 217: 229–240, 2016.CrossRefGoogle Scholar
  9. Clark A.J., Landolt W., Bucher J. et al.: Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. — Environ. Pollut. 109: 501–507, 2000.CrossRefPubMedGoogle Scholar
  10. Collatz G.J., Ball J.T., Grivet C. et al.: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. — Agr. Forest Meteorol. 54: 107–136, 1991.CrossRefGoogle Scholar
  11. Crawley M.J.: The R Book. Pp. 681–713. John Wiley & Sons, Chichester 2012.CrossRefGoogle Scholar
  12. de Bello F., Lavorel S., Díaz S. et al.: Towards an assessment of multiple ecosystem processes and services via functional traits. — Biodivers. Conserv. 19: 2873–2893, 2010.CrossRefGoogle Scholar
  13. De Kauwe M.G., Lin Y.S., Wright I.J. et al.: A test of the ‘onepoint method’for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. — New Phytol. 210: 1130–1144, 2015.CrossRefPubMedGoogle Scholar
  14. Demmig-Adams B., Adams III W.W., Winter K. et al.: Photochemical efficiency of photosystem II,photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal. — Planta 177: 377–387, 1989.CrossRefPubMedGoogle Scholar
  15. Desotgiu R., Pollastrini M., Cascio C. et al.: Responses to ozone on Populus “Oxford” clone in an open top chamber experiment assessed before sunrise and in full sunlight. — Photosynthetica 51: 267–280, 2013.CrossRefGoogle Scholar
  16. Dias M., Brüggemann W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. — Photosynthetica 48: 96–102, 2010.CrossRefGoogle Scholar
  17. Dinç E., Ceppi M.G., Tóth S.Z. et al.: The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. — BBA-Bioenergetics 1817: 770–779, 2012.CrossRefPubMedGoogle Scholar
  18. Ellenberg H.: Indicator values of vascular plants in central Europe. — Scripta Geobot. 9: 97, 1974.Google Scholar
  19. Ellenberg H., Weber H., Dul R. et al.: [Indicator values of Centraleuropean plant species.] — Scripta Geobot. 18: 248, 1991. [In German]Google Scholar
  20. Evans J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. — Oecologia 78: 9–19, 1989.CrossRefPubMedGoogle Scholar
  21. Farquhar G.D., Ehleringer J.R., Hubick K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Phys. 40: 503–537, 1989.CrossRefGoogle Scholar
  22. Farquhar G.D., von Caemmerer S., Berry J.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.CrossRefPubMedGoogle Scholar
  23. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  24. Giorio P.: Black leaf-clips increased minimum fluorescence emission in clipped leaves exposed to high solar radiation during dark adaptation. — Photosynthetica 49: 371–379, 2011.CrossRefGoogle Scholar
  25. Grassi G., Vicinelli E., Ponti F. et al.: Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. — Tree Physiol. 25: 349–360, 2005.CrossRefPubMedGoogle Scholar
  26. Heber U.: Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. — Photosynth. Res. 73: 223–231, 2002.CrossRefPubMedGoogle Scholar
  27. Holland V., Koller S., Brüggemann W.: Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis. — Plant Biol. 16: 801–808, 2014.CrossRefPubMedGoogle Scholar
  28. Jenkins G., Woolhouse H.: Photosynthetic electron transport during senescence of the Primary leaves of Phaseolus vulgaris L.: I. Non-cyclic electron transport. — J. Exp. Bot. 32: 467–478, 1981.CrossRefGoogle Scholar
  29. Kalaji M.H., Goltsev V.N., Żuk-Gołaszewska K. et al.: Chlorophyll fluorescence: understanding crop performance. — Basics and Applications. Pp. 236. CRC Press Taylor & Francis Group, Boca Raton 2017a.Google Scholar
  30. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. — Photosynth. Res. 132: 13–66, 2017b.CrossRefPubMedGoogle Scholar
  31. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. — Photosynth. Res. 122: 121–158, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kattge J., Knorr W., Raddatz T. et al.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. — Glob. Change Biol. 15: 976–991, 2009.CrossRefGoogle Scholar
  33. Kautsky H., Franck U.: [Chlorophyll fluorescence and carbonic acid assimilation.] — Biochem. Z. 315: 139–232, 1943. [In German]Google Scholar
  34. Kitajima M., Butler W.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. — BBA-Bioenergetics 376: 105–115, 1975.CrossRefPubMedGoogle Scholar
  35. Körner C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; with 47 Tables. Pp. 349. Springer Science & Business Media, Berlin–Heidelberg–New York 2003.CrossRefGoogle Scholar
  36. Küppers M., Swan A., Tompkins D. et al.: A field portable system for the measurement of gas exchange of leaves under natural and controlled conditions: examples with field-grown Eucalyptus pauciflora Sieb. ex Spreng. ssp. pauciflora, E. behriana F. Muell. and Pinus radiata R. Don. — Plant Cell Environ. 10: 425–435, 1987.CrossRefGoogle Scholar
  37. Kuznetsova A., Brockhoff P.B., Christensen R.H.B.: ImerTest: Tests in Linear Mixed Effects Models. R Package Version 2.0-29, 2015.Google Scholar
  38. Lakowicz J.R., Masters B.R.: Principles of Fluorescence Spectroscopy. Pp. 954. Springer Science & Business Media, Berlin–Heidelberg–New York 2006.CrossRefGoogle Scholar
  39. Larcher W.: [Ecophysiology of Plants.] Pp. 408. Eugen Ulmer Verlag, Stuttgart 1994. [In German]Google Scholar
  40. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. — Funct. Plant Biol. 33: 9–30, 2006.CrossRefGoogle Scholar
  41. Lichtenthaler H., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. — Photosynthetica 43: 379–393, 2005.CrossRefGoogle Scholar
  42. Lichtenthaler H., Buschmann C., Rinderle U. et al.: Application of chlorophyll fluorescence in ecophysiology. — Radiat. Environ. Bioph. 25: 297–308, 1986.CrossRefGoogle Scholar
  43. Maxwell K., Johnson G. N.: Chlorophyll fluorescence–a practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  44. Medrano H., Escalona J. M., Bota J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. — Ann. Bot.- London 89: 895–905, 2002.CrossRefGoogle Scholar
  45. Nakagawa S., Schielzeth H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models. — Methods Ecol. Evol. 4: 133–142, 2013.CrossRefGoogle Scholar
  46. Neuner G., Ambach D., Aichner K.: Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. — Tree Physiol. 19: 725–732, 1999.CrossRefPubMedGoogle Scholar
  47. Neuner G., Pramsohler M.: Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. — Physiol. Plantarum 126: 196–204, 2006.CrossRefGoogle Scholar
  48. Ögren E., Sjöström M.: Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy. — Planta 181: 560–567, 1990.CrossRefPubMedGoogle Scholar
  49. Öquist G., Huner N.P.: Photosynthesis of overwintering evergreen plants. — Annu. Rev. Plant Biol. 54: 329–355, 2003.CrossRefPubMedGoogle Scholar
  50. Parkhurst D.F.: Diffusion of CO2 and other gases inside leaves. — New Phytol. 126: 449–479, 1994.CrossRefGoogle Scholar
  51. Pérez-Harguindeguy N., Díaz S., Garnier E. et al.: New handbook for standardised measurement of plant functional traits worldwide. — Aust. J. Bot. 61: 167–234, 2013.CrossRefGoogle Scholar
  52. Pflug E., Brüggemann W.: Frost-acclimation of photosynthesis in overwintering Mediterranean holm oak, grown in Central Europe. — Int. J. Plant Biol. 3: e1, 2012.CrossRefGoogle Scholar
  53. R Development Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna 2016.Google Scholar
  54. Rogers A., Humphries S.W.: A mechanistic evaluation of photosynthetic acclimation at elevated CO2. — Glob. Change Biol. 6: 1005–1011, 2000.CrossRefGoogle Scholar
  55. Römermann, C., S.F. Bucher, Hahn M., Bernhardt-Römermann M.: Plant functional traits–fixed facts or variable depending on the season? — Folia Geobot. 51: 143–159, 2016.CrossRefGoogle Scholar
  56. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer-Verlag, Berlin–Heidelberg–New York 1995.CrossRefGoogle Scholar
  57. Schreiber U., Fink R., Vidaver W.: Fluorescence induction in whole leaves: differentiation between the two leaf sides and adaptation to different light regimes. — Planta 133: 121–129, 1977.CrossRefPubMedGoogle Scholar
  58. Sharma D.K., Andersen S.B., Ottosen C.O. et al.: Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. — Physiol. Plantarum 153: 284–298, 2015.CrossRefGoogle Scholar
  59. Strasser R.J., Srivastava A., Tsimilli-Michael M.: Screening the vitality and photosynthetic activity of plants by fluorescence transient. — In: Behl R.K., Punia M.S., Lather B.P.S. (ed.): Crop Improvement for Food Security. Pp. 72–115. SSARM, Hisar 1999.Google Scholar
  60. Strasser R. J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor & Francis, Bristol 2000.Google Scholar
  61. Strasser R. J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.CrossRefGoogle Scholar
  62. Suresh K., Nagamani C., Kantha D.L., Kumar M.K.: Changes in photosynthetic activity in five common hybrids of oil palm (Elaeis guineensis Jacq.) seedlings under water deficit. — Photosynthetica 50: 549–556, 2012.CrossRefGoogle Scholar
  63. Sušila P., Lazár D., Ilík P. et al.: The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. — Photosynthetica 42: 161–172, 2004.CrossRefGoogle Scholar
  64. Troeng E., Linder S.: Gas exchange in a 20-year-old stand of Scots pine. — Physiol. Plantarum 54: 7–14, 1982.CrossRefGoogle Scholar
  65. Tyystjärvi E., Koski A., Keränen M. et al.: The Kautsky curve is a built-in barcode. — Biophys. J. 77: 1159–1167, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Violle C., Navas M.L., Vile D. et al.: Let the concept of trait be functional! — Oikos 116: 882–892, 2007.CrossRefGoogle Scholar
  67. Vogelmann T.C.: Plant tissue optics. — Annu. Rev. Plant Biol. 44: 231–251, 1993.CrossRefGoogle Scholar
  68. Vogelmann T.C., Evans J.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. — Plant Cell Environ. 25: 1313–1323, 2002.CrossRefGoogle Scholar
  69. von Caemmerer S., Farquhar G.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.CrossRefGoogle Scholar
  70. Wickham H.: ggplot2–Elegant Graphics for Data Analysis. Pp. 224. Springer Science & Business Media, Berlin–Heidelberg–New York 2009.Google Scholar
  71. Wild A., Rühle W., Grahl H.: The effect of light intensity during growth of Sinapis alba on the electron-transport and the noncyclic photophosphorylation. — In: Marcelle R. (ed.): Environmental and Biological Control of Photosynthesis. Pp. 115–121. Springer-Verlag, Berlin–Heidelberg–New York 1975.CrossRefGoogle Scholar
  72. Wilson K.B., Baldocchi D.D., Hanson P.J.: Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. — Tree Physiol. 20: 565–578, 2000.CrossRefPubMedGoogle Scholar
  73. Zaehle S., Sitch S., Smith B. et al.: Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics.–Global Biogeochem. Cy. 19: GB3020, 2005.CrossRefGoogle Scholar
  74. Živčák M., Brestič M., Olšovská K. et al.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. — Plant Soil Environ. 54: 133–139, 2008.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • S. F. Bucher
    • 1
    • 2
  • M. Bernhardt–Römermann
    • 1
  • C. Römermann
    • 1
    • 2
  1. 1.Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical GardenFriedrich Schiller University JenaJenaGermany
  2. 2.German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–LeipzigLeipzigGermany

Personalised recommendations