Skip to main content
Log in

Physiological responses of Pterocladiella capillacea (Rhodophyta, Gelidiales) under two light intensities

  • Original paper
  • Published:
Photosynthetica

Abstract

Macroalgae must be able to survive in conditions of different light intensities with no damage to their physiological performance or vital processes. Irradiance can stimulate the biosynthesis of certain photoprotective compounds of biotechnological interest, such as pigments and proteins. Pterocladiella capillacea is a shade-grown alga, which play a role key in the balance of marine ecosystems. In addition, it is considered one of the best sources of bacteriological agar and agarose with a wide pharmacological potential. In order to evaluate the photosensitivity in P. capillacea under 60 (control) and moderate light intensity of 300 μmol(photon) m–2 s–1, photosynthetic performance and chemical composition were assessed. P. capillacea showed photosensitivity without evidence of photodamage. The results indicate the possibility to increase a growth rate and probably infer productivity in long-term cultivation by stimulation at moderate light intensity. Increasing photosynthetic pigment and protein contents were also observed under medium light, an interesting result for functional ingredient approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

absorptance

Ab:

absorbance

APC:

allophycocyanin

DM:

dry mass

Car:

carotenoids

Chl:

chlorophyll

CL:

control irradiance of 60 µmol(photon) m–2 s–1

ETR:

electron transport rate

ETRMAX :

maximal electron transport rate

FM:

fresh mass

FV/FM :

maximal quantum yield of PSII photochemistry

GR:

growth rate

IK :

saturation irradiance

ML:

irradiance of 300 µmol(photon) m–2 s–1

PC:

phycocyanin

PE:

phycoerythrin

P MAX :

maximum photosynthesis

TSP:

total soluble proteins

UV:

ultraviolet

VSES:

von Stosch enrichment solution

ΦPSII :

effective quantum yield of PSII photochemistry

Y(PSII) :

photochemical quenching

Y(NO) :

nonregulated nonphotochemical quenching

Y(NPQ) :

regulated nonphotochemical quenching

α:

photosynthetic efficiency

References

  • Adir N., Zer H., Shochat S. et al.: Photoinhibition: a historical perspective.–Photosynth. Res. 76: 343–370, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Andria J.R., Vergara J.J., Perez-Llorens J.L.: Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels.–Eur. J. Phycol. 34: 497–504, 1999.

    Article  Google Scholar 

  • Asada K.: Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress.–In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Pp. 129–142. Bios. Sci. Publ., Oxford 1994.

    Google Scholar 

  • Balboa E.M., Conde E., Moure A., et al.: In vitro antioxidant properties of crude extracts and compounds from brown algae.–Food Chem. 138: 1764–1785, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Bautista A.I.N., Necchi O. Jr.: Photoacclimation in a tropical population of Cladophora glomerata (L.) Kützing 1843 (Chlorophyta) from southeastern.–Braz. J. Biol. 68: 129–36, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Beach K.S., Smith C.M., Okano R.: Experimental analysis of rhodophyte photoacclimation to PAR and UV-radiation using in vivo absorbance spectroscopy.–Bot. Mar. 43: 525–536, 2000.

    Article  CAS  Google Scholar 

  • Betancor S., Tuya F., Gil-Díaz T. et al.: Effects of a submarine eruption on the performance of two brown seaweeds.–J. Sea Res. 87: 68–78, 2014.

    Article  Google Scholar 

  • Bradford M.: A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.–Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Carnicas E., Jiménez C., Niell F.X.: Effects of changes of irradiance on the pigment composition of Gracilaria tenuistipitata var. liui Zhang et Xia.–J. Photoch. Photobio. B 50: 149–158, 1999.

    Article  CAS  Google Scholar 

  • Chaloub R.M, Reinert F., Nassar C.A.G. et al.: Photosynthetic properties of three Brazilian seaweeds.–Rev. Bras. Bot. 33: 371–374, 2010.

    Article  Google Scholar 

  • Cherry J.H., Nielsen B.L.: Metabolic engineering of chloroplasts for abiotic stress tolerance.–In: Daniell H., Chase C.D. (ed.): Molecular Biology and Biotechnology of Plant Organelles. Pp. 513–525. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Collén P.N., Camitz A., Hancock R.D. et al.: Effect of nutrient deprivation and resupply on metabolites and enzymes related to carbon allocation in Gracilaria tenuistipitata (Rhodophyta).–J. Phycol. 40: 305–314, 2004.

    Article  CAS  Google Scholar 

  • Copertino M.S., Cheshire A., Watling J.: Photoinhibition and photoacclimation of turf algal communities on a temperate reef, after in situ transplantation experiments.–J. Phycol. 42: 580–592, 2006.

    Article  CAS  Google Scholar 

  • Coutinho R., Yoneshigue Y.: Diurnal variation in photosynthesis vs. irradiance curves from “sun” and “shade” plants of Pterocladia capillacea (Gmelin) Bornet et Thuret (Gelidiaciaceae: Rhodophyta) from Cabo Frio, Rio De Janeiro, Brazil.–J. Exp. Mar. Biol. Ecol. 118: 217–228, 1988.

    Article  Google Scholar 

  • Del Campo J.A., García-Gonzáles M., Guerrero M.G.: Outdoor cultivation of microalgae for carotenoid production: current states and perspectives.–Appl. Microbiol. Biotechnol. 74: 1763–1774, 2007.

    Google Scholar 

  • Donkor V.A., Häder D.P.: Effects of ultraviolet irradiation on photosynthetic pigments in some filamentous cyanobacteria.–Aquat. Microb. Ecol. 11: 143–149, 1996.

    Article  Google Scholar 

  • dos Santos R.W., Schmidt É.C., Martins R.P. et al.: Effects of cadmium on growth, photosynthetic pigments, photosynthetic performance, biochemical parameters and structure of chloroplasts in the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales).–Am. J. Plant Sci. 3: 1077–1084, 2012.

    Article  CAS  Google Scholar 

  • Edwards P.: Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas.–In: Edwards P. (ed.): Seaweeds and Sea Grasses: Contributions in Marine Science, vol. 15. Pp. 132. B. J. Copeland, Texas 1970.

    Google Scholar 

  • Falkowski P.G.: Light-shade adaptation in marine phytoplankton.–In: Falkowski P.G. (ed.): Primary Production in the Sea. Pp. 531. Plenum Press, New York 1980.

    Chapter  Google Scholar 

  • Figueroa F.L., Conde-Álvarez R., Gómez I.: Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions.–Photosynth. Res. 75: 259–275, 2003a.

    Article  PubMed  CAS  Google Scholar 

  • Figueroa F.L., Escassi L., Perez-Rodríguez E. et al.: Effects of short-term irradiation on photoinhibition and accumulation of mycosporine-like amino acids in sun and shade species of the red algal genus Porphyra.–J. Photoch. Photobio. B. 69: 21–30, 2003b.

    Article  CAS  Google Scholar 

  • Figueroa F.L., Martínez B., Israel A. et al.: Acclimation of red sea macroalgae to solar radiation: photosynthesis and thallus absorptance.–Aquat. Biol. 7: 159–172, 2009.

    Article  Google Scholar 

  • Figueroa F.L., Domínguez-González B., Korbee N.: Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups.–Mar. Environ. Res. 97: 30–38, 2014a.

    Article  PubMed  CAS  Google Scholar 

  • Figueroa F.L, Barufi B.J., Malta E.J. et al.: Short-term effects of increased CO2, nitrate and temperature on three Mediterranean macroalgae: photosynthesis and biochemical composition.–Aquat. Biol. 22: 177–193, 2014b.

    Article  Google Scholar 

  • Franklin L.A., Larkum A.W.D.: Multiple strategies for a high light existence in a tropical marine macroalga.–Photosynth. Res. 53: 149–159, 1997.

    Article  CAS  Google Scholar 

  • ranklin L.A., Osmond C.B., Larkym A.W.D.: Photoinhibition, UV-B and Algal Photosynthesis. Pp. 352–375. Kluwer Academic Publishers, Berlin 2003.

    Google Scholar 

  • Gal-Or S., Israel A.: Growth responses of Pterocladiella capillacea (Rhodophyta) in laboratory and outdoor cultivation.–J. Appl. Phycol. 16: 195–202, 2004.

    Article  Google Scholar 

  • Gantt E.: Pigmentation and photoacclimation.–In: Cole K.M., Sheath R.G. (ed.): Biology of the Red Algae. Pp. 203–219. Cambridge University Press, Cambridge 1990.

    Google Scholar 

  • Gómez I., Huovinen P.: Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits.–Mar. Ecol. Prog. Ser. 422: 77–91, 2011.

    Article  Google Scholar 

  • Gómez I., López-Figueroa F., Ulloa N. et al.: Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile.–Mar. Ecol. Prog. Ser. 270: 103–116, 2004.

    Article  Google Scholar 

  • Gordillo F.J.L, Jiménez C., Goutx M. et al.: Effects of CO2 and nitrogen supply on the biochemical composition of Ulva rigida with especial emphasis on lipid class analysis.–J. Plant Physiol. 158: 367–373, 2001.

    Article  CAS  Google Scholar 

  • Goss R., Jacob T.: Regulation and function of xanthophyll cycledependent photoprotection in algae.–Photosynth. Res. 106: 103–122, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Grobbelaar J.U., Kurano N.: Use of photoacclimation in the design of a novel photobioreactor to achieve high yields in algal mass cultivation.–J. Appl. Phycol. 15: 121–126, 2003.

    Article  CAS  Google Scholar 

  • Grzymski J., Johnsen G., Sakshaug E.: The significance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae.–J. Appl. Phycol. 33: 408–414, 1997.

    Article  Google Scholar 

  • Guimarães S.M.P.B.: A revised checklist of benthic marine Rhodophyta from the state of Espírito Santo, Brazil.–Bol. Inst. Bot. 17: 143–194, 2006.

    Google Scholar 

  • Hanelt D., Figueroa F.L.: Physiological and photomorphogenic effects of light on marine macrophytes.–In: Wiencke C., Bischof K. (ed.): Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization, Vol. 219. Pp. 3–23. Springer, Heidelberg 2012.

    Article  Google Scholar 

  • Hanelt D., Hawes I., Rae R.: Reduction of UV-B radiation causes an enhancement of photoinhibition in high light stressed aquatic plants from New Zealand lakes.–J. Photoch. Photobio. B 84: 89–102, 2006.

    Article  CAS  Google Scholar 

  • He L.H., Wu M., Qian P.Y. et al.: Effects of co-culture and salinity on the growth and agar yield of Gracilaria tenuistipitata var. liui Zhang et Xia.–Chin. J. Oceanol. Limnol. 20: 365–370, 2002.

    Article  Google Scholar 

  • Heldt H-W., Piechulla B.: Plant Biochemistry, 4th ed. Pp. 618. Elsevier, Burlington 2011.

    Google Scholar 

  • Hideg E., Spetea C., Vass I.: Singlet oxygen and free-radical production during acceptor-induced and donor-side-induced photoinhibition: studies with spin-trapping EPR spectroscopy.–BBA-Bioenergenetics 1186: 143–152, 1994.

    Article  CAS  Google Scholar 

  • Hou X., Hou H.J.: Roles of manganese in photosystem II dynamics to irradiations and temperatures.–Front Biol. 8: 312–322, 2013.

    Article  CAS  Google Scholar 

  • Huertas E., Montero O., Lubián L.M.: Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae.–Aquacult. Eng. 22: 181–197, 2000.

    Article  Google Scholar 

  • Jassby A.D., Platt T.: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton.–Limnol. Oceanogr. 21: 540–547, 1976.

    Article  CAS  Google Scholar 

  • Klughammer C., Schreiber U.: Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method.–PAM Appl. Notes. 1: 27–35, 2008.

    Google Scholar 

  • Kursar T.A., van der Meer J., Alberte R.S.: Light-harvesting system of the red alga Gracilaria tikvahiae. I. Biochemical analyses of pigments mutation.–Plant Physiol. 73: 353–360, 1983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee T.M., Shiu C.T.: Implications of mycosporine-like amino acid and antioxidant defences in UV-B radiation tolerance for the algae species Pterocladiella capillacea and Gelidium amansii.–Mar. Environ. Res. 67: 8–16, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Levy I., Gantt E.: Light acclimation in Porphyridium purpureum (Rhodophyta): growth, photosynthesis, and phycobilisomes.–J. Appl. Phycol. 24: 452–458, 1988.

    Google Scholar 

  • Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy.–In: Wrolstad R.E., Acree T.E., An H. et al. (ed.): Current Protocols in Food Analytical Chemistry. Pp. F4.3.1–F4.3.8. John Wiley & Sons, New York 2001.

    Google Scholar 

  • Liu F., Pang S.J.: Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmate.–J. Exp. Mar. Biol. Ecol. 382: 82–87, 2010.

    Article  CAS  Google Scholar 

  • MacIntyre H.L., Kana T.M., Geider R.J.: The effect of water motion on short-term rates of photosynthesis by marine phytoplankton.–Trends Plant Sci. 5: 12–17, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Martínez B., Rico J.: Changes in nutrient content of Palmaria palmata in response to changes in nutrient to variable light and upwelling in northern Spain.–J. Phycol. 44: 50–59, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Martins A.P., Chow F., Yokoya N.S.: [In vitro assay of nitrate reductase enzyme and effect of nitrate and phosphate availability in colour strains of Hypnea musciformis (Wulfen) J. V. Lamour. E. (Gigartinales, Rhodophyta)].–Rev. Bras. Bot. 32: 635–645, 2009. [In Portuguese]

    Article  Google Scholar 

  • Martone P. T., Alyono M., Stites S.: Bleaching of an intertidal coralline alga: untangling the effects of light, temperature and desiccation.–Mar. Ecol. Prog. Ser. 416: 57–67, 2010.

    Article  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence: a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mercado J.M., Jiménez C., Niell F.X. et al.: Comparison of methods for measuring light absorption by algae and their application to the estimation of package effect.–Sci. Mar. 60: 39–45, 1996.

    Google Scholar 

  • Nascimento E.F.I., Rosso S.: [Fauna associated with benthic marine macroalgae (Rhodophyta and Phaeophyta) from São Sebastião, São Paulo].–Rev. Bras. Ecol. 11: 38–52, 2007. [In Portuguese]

    Google Scholar 

  • Necchi O. Jr.: Light-related photosynthetic characteristic of freshwater Rhodophyta.–Aquat. Bot. 82: 193–20, 2005.

    Article  CAS  Google Scholar 

  • Nishihara G.N., Terada R., Noro T.: Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales).–J. Appl. Phycol. 17: 371–377, 2005.

    Article  CAS  Google Scholar 

  • Nishiyama Y., Allakhverdiev S., Yamamoto H. et al.: Singlet oxygen inhibits the repair of photosystem II by suppressing translation elongation of the D1 protein in Synechocystis sp.–Biochemistry 43: 11321–11330, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nyvall-Cóllen P., Camitz A., Hancock R.D. et al.: Effect of nutrient deprivation and resupply on metabolites and enzymes related to carbon allocation in Gracilaria tenuistipitata (Rhodophyta).–J. Appl. Phycol. 40: 305–314, 2004.

    Article  CAS  Google Scholar 

  • Oliveira E.C., Saito R.M., Neto J.F.S. et al.: Temporal and spatial variation in agar from a population of Pterocladia capillacea (Gelidiales, Rhodophyta) from Brazil.–Hydrobiologia 326: 501–504, 1996.

    Article  Google Scholar 

  • Park J.J., Han T., Choi E.M.: Differences in the oxidative stress and antioxidant responses of three marine macroalgal species upon UV exposure.–Toxicol. Environ. Health Sci. 8: 101–107, 2016.

    Article  Google Scholar 

  • Penniman C.A., Mathieson A.C., Penniman C.E.: Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire.–Bot. Mar. 29: 147–154, 1986.

    Article  Google Scholar 

  • Polo L.K., Felix M.R.L., Kreusch M. et al.: Metabolic profile of the brown macroalga Sargassum cymosum (Phaeophyceae, Fucales) under laboratory UV radiation and salinity conditions.–J. Appl. Phycol. 90: 560–571, 2014.

    CAS  Google Scholar 

  • Ramus J., Rosenberg G.: Diurnal photosynthetic performance of seaweeds measured under natural conditions.–Mar. Biol. 56: 21–28, 1980.

    Article  CAS  Google Scholar 

  • Rohácek K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships.–Photosynth. Res. 40: 13–29, 2002.

    Article  Google Scholar 

  • Sampath-Wiley P., Neefus C., Jahnke L.: Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales).–J. Exp. Mar. Biol. Ecol. 361: 83–91, 2008.

    Article  CAS  Google Scholar 

  • Schmidt E.C., Pereira B., Pontes C.L.: Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei Rhodophyta, Gigartinales.–Protoplasma 249: 353–367, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.–Photosynth. Res. 10: 51–62, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U., Neubauer C.: O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence.–Photosynth. Res. 25: 279–293, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Schubert N., García-Mendoza E.: Photoinhibition in red algal species with different carotenoid profiles.–J. Phycol. 44: 1437–1446, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Schubert N., García-Mendoza E., Enríquez S.: Is the photoacclimation response of Rhodophyta conditioned by the species carotenoid profile?–Limnol. Oceanogr. 56: 2347–2361, 2011.

    Article  CAS  Google Scholar 

  • Serra D.R.: [Gracilariopsis tenuifrons (Gracilariales–Rhodophyta) Response to Irradiance Stimuli in vitro].–Masters Dissertation. Pp. 97. Institute of Bioscience, University of São Paulo, São Paulo 2013. [In Portuguese]

    Google Scholar 

  • Sudatti D.B., Fujii M.T., Rodrigues S.V.: Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agardh (Ceramiales, Rhodophyta).–Mar. Biol. 158: 1439–1446, 2011.

    Article  CAS  Google Scholar 

  • Smit A.J.: Nitrogen uptake by Gracilaria gracilis (Rhodophyta): adaptations to a temporally variable nitrogen environment.–Bot. Mar. 45: 196–209, 2002.

    Article  CAS  Google Scholar 

  • Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage.–Trends Plant Sci. 16: 53–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S., Murata N.: How do environmental stress accelerate photoinhibition?–Trends Plant Sci. 3: 178–182, 2008.

    Article  CAS  Google Scholar 

  • Tala F., Chow F.: Phenology and photosynthetic performance of Porphyra spp. (Bangiophyceae, Rhodophyta): seasonal and latitudinal variation in Chile.–Aquat. Bot. 113: 107–116, 2014.

    Article  Google Scholar 

  • Torres P.B., Chow F., Santos D.Y.A.C.: Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro culture.–J. Appl. Phycol. 27: 1243–1251, 2014.

    Article  CAS  Google Scholar 

  • Ursi S., Plastino E.M.: [Growth of reddish and light green strains of Gracilaria sp. (Gracilariales, Rhodophyta) in two culture media: analysis of different reproductive phases].–Rev. Bras. Bot. 24: 587–594, 2001. [In Portuguese]

    Article  Google Scholar 

  • Ursi S., Pedersén M., Plastino E. et al.: Intraspecific variation of photosynthesis, respiration and photoprotective carotenoids in Gracilaria birdiae (Gracilariales: Rhodophyta).–Mar. Biol. 142: 997–1007, 2003.

    Article  CAS  Google Scholar 

  • Wanderley A.: [Effect of Nitrate Availability on Growth, Nitrate Reductase Activity, Chemical Composition and Nitrate and Phosphate Uptake in Gracilariopsis tenuifrons (Gracilariales, Rhodophyta)].–Masters Dissertation. Pp. 140. Institute of Bioscience, University of São Paulo, São Paulo, 2009. [In Portuguese]

    Google Scholar 

  • Yakovleva I.M., Titlyanov E.A.: Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress photoinhibition and protective mechanisms.–Aquat. Bot. 71: 47–61, 2001.

    Article  CAS  Google Scholar 

  • Zubia M., Freile-Pelegrín Y., Robledo D.: Photosynthesis, pigment composition and antioxidant defences in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) under environmental stress.–J. Phycol. 26: 2001–2010, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.B. Harb.

Additional information

Acknowledgements: The authors thank FAPESP (São Paulo Research Foundation; 2014/09380-3 and Biota/Fapesp 2013/50731-1) and CNPq (National Counsel of Technological and Scientific Development) for financial support and scholarships. F. Chow thanks CNPq for CNPq Research Productivity Scholarship (303937/2015-7).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harb, T., Nardelli, A. & Chow, F. Physiological responses of Pterocladiella capillacea (Rhodophyta, Gelidiales) under two light intensities. Photosynthetica 56, 1093–1106 (2018). https://doi.org/10.1007/s11099-018-0805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0805-9

Additional key words

Navigation