Skip to main content
Log in

The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra)

  • Original paper
  • Published:
Photosynthetica

Abstract

The photosynthesis was investigated 30 d after Pb treatment in Myrica rubra seedlings. The Pb treatment resulted in significantly increased Pb concentrations in shoots. Low Pb concentration exposure (≤2 mM) reduced the net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) without affecting the intercellular CO2 concentration (Ci), chlorophyll (Chl) content, and Chl fluorescence parameters. At 10 d after severe Pb treatment (≥4 mM), PN was inhibited and accompanied by Chl damage, while at 30 d, the inhibition of PN was followed by an increase of Ci and a decrease of gs, E, Chl content, and Chl fluorescence parameters. M. rubra showed a promising prospect for use in the soil phytoremediation, when Pb concentration is low, but the remediation efficiency of M. rubra is limited if Pb exceeds 2 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AOS:

activated oxygen species

Ci:

intercellular CO2 concentration

Chl:

chlorophyll

E :

transpiration rate

F0 :

minimal fluorescence of the dark-adapted state

ΦPSII :

effective quantum yield of PSII photochemistry

Fv/Fm :

maximal quantum yield of PSII photochemistry

gs:

stomatal conductance

P N :

net photosynthetic rate

qN:

nonphotochemical quenching coefficient

qP:

photochemical quenching coefficient

WUE:

water-use efficiency

References

  • Ahmad M.S.A., Hussain M., Ijaz S. et al.: Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress.–Int. J. Agr. Bio. 10: 167–172, 2008.

    CAS  Google Scholar 

  • Ali H., Khan E., Sajad M.A.: Phytoremediation of heavy metalsconcepts and applications.–Chemosphere 91: 869–881, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.–Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Axelsen K.B., Palmgren M.G.: Inventory of the superfamily of P-Type ion pumps in Arabidopsis.–Plant Physiol. 126: 696–706, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Callahan D.L., Baker A.J.M., Kolev S.D. et al.: Metal ion ligands in hyper-accumulating plants.–J. Biol. Inorg. Chem. 11: 2–12, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Caparròs S., Diaz M.J., Ariza J. et al.: New perspectives for Paulownia fortunei L. valorization of the autohydrolysis and pulping processes.–Bioresource Technol. 99: 741–749, 2008.

    Article  CAS  Google Scholar 

  • Doumett S., Lamperi L., Checchini L. et al.: Heavy metal distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study: influence of different complexing agents.–Chemosphere 72: 1481–1490, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Drazkiewicz M.: Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors (Review).–Photosynthetica 30: 321–331, 1994.

    CAS  Google Scholar 

  • Fargašová A.: Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots.–Biol. Plantarum 44: 471–473, 2001.

    Article  Google Scholar 

  • Farquhar G.D. Sharkey T.D.: Stomatal conductance and photosynthesis.–Annu. Rev. Plant Physio. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Gajic G., Mitrovic M., Pavlovic P. et al.: An assessment of the tolerance of Ligustrum ovalifolium Hassk. to traffic-generated Pb using physiological and biochemical marker.–Ecotox. Environ. Safe. 72: 1090–1101, 2009.

    Article  CAS  Google Scholar 

  • Gupta D., Nicoloso F., Schetinger M. et al.: Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress.–J. Hazard. Mater. 172: 479–484, 2009.

    Article  PubMed  CAS  Google Scholar 

  • He B., He J., He X. et al.: [Effects of lead on physiological characteristics of bayberry seedlings.]–RDA J. Agro-Environ. Sci. 28: 1263–1268, 2009. [In Chinese]

    CAS  Google Scholar 

  • He X., Chen L., He B. et al.: [Effect of lead nitrate on the growth of Myrica rubra.]–J. Fruit Sci. 21: 29–32, 2004. [In Chinese]

    Google Scholar 

  • Hussain M., Ahmad M.S.A., Kausar A.: Effect of lead and chromium on growth, photosynthetic pigments and yield components in mash bean [Vigna mungo (L.) Hepper].–Pak. J. Bot. 38: 1389–1396, 2006.

    Google Scholar 

  • Jamil M., Rehman S., Lee K.J. et al.: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish.–Sci. Agr. 64: 111–118, 2007.

    Article  CAS  Google Scholar 

  • Karukstis K.: Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus.–In: Sheer H. (ed.): Chlorophylls. Pp. 769–795. CRC Press, Boca Raton 1991.

    Google Scholar 

  • Ke S.: Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings.–Agr. Sci. China. 6: 1182–1192, 2007.

    Article  CAS  Google Scholar 

  • Koyro H., Hussain T., Huchzermeyer B. et al.: Photosynthetic and growth response of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations.–Environ. Exp. Bot. 91: 22–29, 2013.

    Article  CAS  Google Scholar 

  • Li X., Bu N., Li Y. et al.: Growth, photosynthesis and antioxidant response of endophyte infected and non-infected rice under lead stress conditions.–J. Hazard Mater. 213-214: 55–56, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Meneguelli-Souza A.C., Vitória A.P., Vieira T.O. et al.: Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions.–Photosynthetica 54: 243–250, 2016.

    Article  CAS  Google Scholar 

  • Mils R.F., Krjiger G.C., Baccarini P.J. et al.: Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass.–Plant J. 35: 164–176, 2003.

    Article  CAS  Google Scholar 

  • MLRC, MEPC: [Bulletin on national survey of soil contamination.] Reference No. 000014672/2014-00351. Ministry of envrironmental protection of China, Beijing 2014. [In Chinese]

  • Moustakas M., Lanaras T., Symeonidis L. et al.: Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress.–Photosynthetica 30: 389–396, 1994.

    CAS  Google Scholar 

  • Parys E., Romanowska E., Siedlecka M. et al.: The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum.–Acta Physiol. Plant. 20: 313–322, 1998.

    Article  CAS  Google Scholar 

  • Prasad M.N.V.: Metal-biomolecule complex in plants: Occurrence, function and applications.–Analysis 26: 25–27, 1998.

    Google Scholar 

  • Rascio N., Navari-Izzo F.: Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?–Plant Sci. 180: 169–181, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Rashid A., Camm E.L., Ekramoddoullah A.K.: Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II.–FEBS Lett. 350: 296–298, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sengar R.S., Gautam M., Sengar R.S. et al.: Lead stress effects on physiobiochemical activities of higher plants.–Rev. Environ. Contam. T. 196: 73–93, 2008.

    CAS  Google Scholar 

  • Shahid M., Pinelli E., Pourrut B. et al.: Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation.–Ecotox. Environ. Safe. 74: 78–84, 2011.

    Article  CAS  Google Scholar 

  • Shakoor M.B., Ali S., Hameed A. et al.: Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pbinduced morphological and biochemical damages.–Ecotox. Environ. Safe. 109: 38–47, 2014.

    Article  CAS  Google Scholar 

  • Sharma P., Dubey R.S.: Lead toxicity in plants.–Braz. J. Plant Physiol. 17: 35–52, 2005.

    Article  CAS  Google Scholar 

  • Skórzynska-Polit E., Baszynski T.: Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age.–Plant Sci. 128: 11–21, 1997.

    Article  Google Scholar 

  • Stefanov K., Seizova K., Popova I. et al.: Effect of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris.–J. Plant Physiol. 147: 243–246, 1995.

    Article  CAS  Google Scholar 

  • Subrahmanyam D., Rathore V.S.: Influence of manganese toxicity on photosynthesis in ricebean (Vigna umbellate) seedlings.–Photosynthetica 38: 449–453, 2000.

    Article  CAS  Google Scholar 

  • Tanyolaç D., Ekmekçi Y., Ünalan S.: Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.–Chemosphere 67: 89–98, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Tzvetkova N., Miladinova K., Ivanova K. et al.: Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contamination soil.–J. Environ. Biol. SN: 145–151, 2015.

    Google Scholar 

  • van Assche F., Clijsters H.: Effects of metals on enzyme activity in plants.–Plant Cell Environ. 13: 195–206, 1990.

    Article  Google Scholar 

  • Watanabe M.E.: Phytoremediation on the brink of commercialization.–Environ. Sci. Technol. 31: 182–186, 1997.

    Article  Google Scholar 

  • Witters N., van Slycken S.V., Ruttens A. et al.: Short-rotation coppice of willow for phytoremediation of a metalcontaminated agricultural area: a sustainability assessment.–Bioenerg. Res. 2: 144–152, 2009.

    Article  Google Scholar 

  • Wu X., Hong F.S., Liu C. et al.: Effects of Pb2+ on energy distribution and photochemical activity of spinach chloroplast.–Spectrochim. Acta A 69: 738–742, 2008a.

    Article  CAS  Google Scholar 

  • Wu X., Liu C., Qu C. et al.: Effects of lead on activities of photochemical reaction and key enzymes of carbon assimilation in spinach chloroplast.–Biol. Trace Elem. Res. 126: 269–279, 2008b.

    Article  CAS  Google Scholar 

  • Yadav S.K.: Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants.–S. Afr. J. Bot. 76: 167–179, 2010.

    Article  CAS  Google Scholar 

  • Zu Y., Li Y., Schvartz C. et al.: Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.–Environ. Int. 30: 567–576, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. He or X. He.

Additional information

Acknowledgements: We would like to thank editors for editing and improving the language of the manuscript. We also thank Dr. Reza Hajimorad, University of Tennessee, Knoxville, USA, for linguistic assistance. This research was supported by the National Natural Science Foundations of China (Grant Nos. 30560007, 31060087, 31560122), and the “Soil Pollution and Ecological Remediation” Talent’s Small Highland Project of Guangxi Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Gu, M., Wang, X. et al. The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra). Photosynthetica 56, 1147–1153 (2018). https://doi.org/10.1007/s11099-018-0800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0800-1

Additional key words

Navigation