The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra)

Article
  • 4 Downloads

Abstract

The photosynthesis was investigated 30 d after Pb treatment in Myrica rubra seedlings. The Pb treatment resulted in significantly increased Pb concentrations in shoots. Low Pb concentration exposure (≤2 mM) reduced the net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) without affecting the intercellular CO2 concentration (Ci), chlorophyll (Chl) content, and Chl fluorescence parameters. At 10 d after severe Pb treatment (≥4 mM), PN was inhibited and accompanied by Chl damage, while at 30 d, the inhibition of PN was followed by an increase of Ci and a decrease of gs, E, Chl content, and Chl fluorescence parameters. M. rubra showed a promising prospect for use in the soil phytoremediation, when Pb concentration is low, but the remediation efficiency of M. rubra is limited if Pb exceeds 2 mM.

Additional key words

chlorophyll fluorescence lead stress photosynthesis 

Abbreviations

AOS

activated oxygen species

Ci

intercellular CO2 concentration

Chl

chlorophyll

E

transpiration rate

F0

minimal fluorescence of the dark-adapted state

ФPSII

effective quantum yield of PSII photochemistry

Fv/Fm

maximal quantum yield of PSII photochemistry

gs

stomatal conductance

PN

net photosynthetic rate

qN

nonphotochemical quenching coefficient

qP

photochemical quenching coefficient

WUE

water-use efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M.S.A., Hussain M., Ijaz S. et al.: Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress.–Int. J. Agr. Bio. 10: 167–172, 2008.Google Scholar
  2. Ali H., Khan E., Sajad M.A.: Phytoremediation of heavy metalsconcepts and applications.–Chemosphere 91: 869–881, 2013.CrossRefPubMedGoogle Scholar
  3. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.–Plant Physiol. 24: 1–15, 1949.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Axelsen K.B., Palmgren M.G.: Inventory of the superfamily of P-Type ion pumps in Arabidopsis.–Plant Physiol. 126: 696–706, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  6. Callahan D.L., Baker A.J.M., Kolev S.D. et al.: Metal ion ligands in hyper-accumulating plants.–J. Biol. Inorg. Chem. 11: 2–12, 2006.CrossRefPubMedGoogle Scholar
  7. Caparròs S., Diaz M.J., Ariza J. et al.: New perspectives for Paulownia fortunei L. valorization of the autohydrolysis and pulping processes.–Bioresource Technol. 99: 741–749, 2008.CrossRefGoogle Scholar
  8. Doumett S., Lamperi L., Checchini L. et al.: Heavy metal distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study: influence of different complexing agents.–Chemosphere 72: 1481–1490, 2008.CrossRefPubMedGoogle Scholar
  9. Drazkiewicz M.: Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors (Review).–Photosynthetica 30: 321–331, 1994.Google Scholar
  10. Fargašová A.: Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots.–Biol. Plantarum 44: 471–473, 2001.CrossRefGoogle Scholar
  11. Farquhar G.D. Sharkey T.D.: Stomatal conductance and photosynthesis.–Annu. Rev. Plant Physio. 33: 317–345, 1982.CrossRefGoogle Scholar
  12. Gajić G., Mitrović M., Pavlović P. et al.: An assessment of the tolerance of Ligustrum ovalifolium Hassk. to traffic-generated Pb using physiological and biochemical marker.–Ecotox. Environ. Safe. 72: 1090–1101, 2009.CrossRefGoogle Scholar
  13. Gupta D., Nicoloso F., Schetinger M. et al.: Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress.–J. Hazard. Mater. 172: 479–484, 2009.CrossRefPubMedGoogle Scholar
  14. He B., He J., He X. et al.: [Effects of lead on physiological characteristics of bayberry seedlings.]–RDA J. Agro-Environ. Sci. 28: 1263–1268, 2009. [In Chinese]Google Scholar
  15. He X., Chen L., He B. et al.: [Effect of lead nitrate on the growth of Myrica rubra.]–J. Fruit Sci. 21: 29–32, 2004. [In Chinese]Google Scholar
  16. Hussain M., Ahmad M.S.A., Kausar A.: Effect of lead and chromium on growth, photosynthetic pigments and yield components in mash bean [Vigna mungo (L.) Hepper]. — Pak. J. Bot. 38: 1389–1396, 2006.Google Scholar
  17. Jamil M., Rehman S., Lee K.J. et al.: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. — Sci. Agr. 64: 111–118, 2007.CrossRefGoogle Scholar
  18. Karukstis K.: Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. — In: Sheer H. (ed.): Chlorophylls. Pp. 769–795. CRC Press, Boca Raton 1991.Google Scholar
  19. Ke S.: Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings. — Agr. Sci. China. 6: 1182–1192, 2007.CrossRefGoogle Scholar
  20. Koyro H., Hussain T., Huchzermeyer B. et al.: Photosynthetic and growth response of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. — Environ. Exp. Bot. 91: 22–29, 2013.CrossRefGoogle Scholar
  21. Li X., Bu N., Li Y. et al.: Growth, photosynthesis and antioxidant response of endophyte infected and non-infected rice under lead stress conditions. — J. Hazard Mater. 213-214: 55–56, 2012.CrossRefPubMedGoogle Scholar
  22. Meneguelli-Souza A.C., Vitória A.P., Vieira T.O. et al.: Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions. — Photosynthetica 54: 243–250, 2016.CrossRefGoogle Scholar
  23. Mils R.F., Krjiger G.C., Baccarini P.J. et al.: Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. — Plant J. 35: 164–176, 2003.CrossRefGoogle Scholar
  24. MLRC, MEPC: [Bulletin on national survey of soil contamination.] Reference No. 000014672/2014-00351. Ministry of envrironmental protection of China, Beijing 2014. [In Chinese]Google Scholar
  25. Moustakas M., Lanaras T., Symeonidis L. et al.: Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. — Photosynthetica 30: 389–396, 1994.Google Scholar
  26. Parys E., Romanowska E., Siedlecka M. et al.: The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. — Acta Physiol. Plant. 20: 313–322, 1998.CrossRefGoogle Scholar
  27. Prasad M.N.V.: Metal-biomolecule complex in plants: Occurrence, function and applications. — Analysis 26: 25–27, 1998.Google Scholar
  28. Rascio N., Navari-Izzo F.: Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? — Plant Sci. 180: 169–181, 2011.CrossRefPubMedGoogle Scholar
  29. Rashid A., Camm E.L., Ekramoddoullah A.K.: Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II. — FEBS Lett. 350: 296–298, 1994.CrossRefPubMedGoogle Scholar
  30. Sengar R.S., Gautam M., Sengar R.S. et al.: Lead stress effects on physiobiochemical activities of higher plants. — Rev. Environ. Contam. T. 196: 73–93, 2008.Google Scholar
  31. Shahid M., Pinelli E., Pourrut B. et al.: Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. — Ecotox. Environ. Safe. 74: 78–84, 2011.CrossRefGoogle Scholar
  32. Shakoor M.B., Ali S., Hameed A. et al.: Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pbinduced morphological and biochemical damages. — Ecotox. Environ. Safe. 109: 38–47, 2014.CrossRefGoogle Scholar
  33. Sharma P., Dubey R.S.: Lead toxicity in plants. — Braz. J. Plant Physiol. 17: 35–52, 2005.CrossRefGoogle Scholar
  34. Skórzy\~nska-Polit E., Baszyñski T.: Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. — Plant Sci. 128: 11–21, 1997.CrossRefGoogle Scholar
  35. Stefanov K., Seizova K., Popova I. et al.: Effect of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. — J. Plant Physiol. 147: 243–246, 1995.CrossRefGoogle Scholar
  36. Subrahmanyam D., Rathore V.S.: Influence of manganese toxicity on photosynthesis in ricebean (Vigna umbellate) seedlings. — Photosynthetica 38: 449–453, 2000.CrossRefGoogle Scholar
  37. Tanyolaç D., Ekmekçi Y., Ünalan Ş.: Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. — Chemosphere 67: 89–98, 2007.CrossRefPubMedGoogle Scholar
  38. Tzvetkova N., Miladinova K., Ivanova K. et al.: Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contamination soil. — J. Environ. Biol. SN: 145–151, 2015.Google Scholar
  39. van Assche F., Clijsters H.: Effects of metals on enzyme activity in plants. — Plant Cell Environ. 13: 195–206, 1990.CrossRefGoogle Scholar
  40. Watanabe M.E.: Phytoremediation on the brink of commercialization. — Environ. Sci. Technol. 31: 182–186, 1997.CrossRefGoogle Scholar
  41. Witters N., van Slycken S.V., Ruttens A. et al.: Short-rotationcoppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. — Bioenerg. Res. 2: 144–152, 2009.CrossRefGoogle Scholar
  42. Wu X., Hong F.S., Liu C. et al.: Effects of Pb2+ on energy distribution and photochemical activity of spinach chloroplast. — Spectrochim. Acta A 69: 738–742, 2008a.CrossRefGoogle Scholar
  43. Wu X., Liu C., Qu C. et al.: Effects of lead on activities of photochemical reaction and key enzymes of carbon assimilation in spinach chloroplast. — Biol. Trace Elem. Res. 126: 269–279, 2008b.CrossRefGoogle Scholar
  44. Yadav S.K.: Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. — S. Afr. J. Bot. 76: 167–179, 2010.CrossRefGoogle Scholar
  45. Zu Y., Li Y., Schvartz C. et al.: Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. — Environ. Int. 30: 567–576, 2004.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Agri-environment and Agri-products Safety, College of AgricultureGuangxi UniversityNanning, GuangxiChina
  2. 2.College of AgricultureGuangxi UniversityNanning, GuangxiChina

Personalised recommendations