Photosynthetica

, Volume 56, Issue 1, pp 334–341 | Cite as

Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand

  • P. Yodsang
  • W. Raksajit
  • E-M. Aro
  • P. Mäenpää
  • A. Incharoensakdi
Article
  • 30 Downloads

Abstract

We report here the screening of sixteen cyanobacterial and three green algal strains from Thailand for their potential biohydrogen production. Five filamentous cyanobacterial species, namely Calothrix elenkinii, Fischerella muscicola, Nostoc calcicola, Scytonema bohneri, and Tolypothrix distorta, all possessing nitrogenase activity, showed potentially high biohydrogen production. These five strains showed higher hydrogen production in the absence than in the presence of nitrogen. In particular, F. muscicola had a 17-fold increased hydrogen production under combined nitrogen and sulfur deprived conditions. Among various sugars as a carbon source, glucose at 0.1% (w/v) gave the maximal hydrogen production of 10.9 μmol(H2) mg–1(Chl) h–1 in T. distorta grown in BG11 medium without nitrate. Increasing light intensity up to 250 μmol(photon) m–2 s–1 increased hydrogen production in F. muscicola and T. distorta. Overall results indicate that both F. muscicola and T. distorta have a high potential for hydrogen production amenable for further improvement by using molecular genetics technique.

Additional key words

culturing parameters heterocyst N2-fixing condition 

Abbreviation

Chl

chlorophyll

hox gene

bidirectional hydrogenase gene

hup gene

uptake hydrogenase gene

PCC

Pasteur Culture Collection

TISTR

Thailand Institute of Scientific and Technological Research

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allahverdiyeva Y., Leino H., Saari L. et al.: Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes.–Int. J. Hydrogen Energ. 35: 1117–1127, 2010.CrossRefGoogle Scholar
  2. Antal T.K., Lindblad P.: Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane at various extracellular pH.–J. Appl. Microbiol. 98: 114–120, 2005.CrossRefPubMedGoogle Scholar
  3. Aoyama K., Uemura I., Miyake J. et al.: Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis.–J. Ferment. Bioeng. 83: 17–20, 1997.CrossRefGoogle Scholar
  4. Baebprasert W., Lindblad P., Incharoensakdi A.: Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC6803.–Int. J. Hydrogen Energ. 35: 6611–6616, 2010.CrossRefGoogle Scholar
  5. Berberoǧlu H., Jay J., Pilon L.: Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC29413.–Int. J. Hydrogen Energ. 33: 1172–1184, 2008.CrossRefGoogle Scholar
  6. Bothe H., Schmitz O., Yates M.G. et al.: Nitrogen fixation and hydrogen metabolism in cyanobacteria.–Microbiol. Mol. Biol. Rev. 74: 529–551, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen P.C., Fan S.H., Chiang C.L. et al.: Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3.–Int. J. Hydrogen Energ. 33: 1460–1464, 20CrossRefGoogle Scholar
  8. Dutta D., De D., Chaudhuri S., Bhattacharya S.K.: Hydrogen production by cyanobacteria.–Microb. Cell Fact. 4: 36, 2005CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fay P.: Oxygen relations of nitrogen fixation in cyanobacteria.–Microbiol. Rev. 56: 340–373, 1992.PubMedPubMedCentralGoogle Scholar
  10. Fouchard S., Hemschemeier A., Caruana A. et al.: Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.–Appl. Environ. Microbiol. 71: 6199–6205, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gutekunst K., Chen Xi, Schreiber K. et al.: The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotropic nitrate-limiting conditions–J. Biol. Chem. 289: 1930–1937, 2014.CrossRefPubMedGoogle Scholar
  12. Hansel A., Lindblad P.: Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source.–Appl. Microbiol. Biot. 50: 153–160, 1998.CrossRefGoogle Scholar
  13. Khetkorn W., Lindblad P., Incharoensakdi A.: Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012.–Int. J. Hydrogen Energ. 35: 12767–12776, 2010.CrossRefGoogle Scholar
  14. Khetkorn W., Lindblad P., Incharoensakdi A.: Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012.–J. Biol. Eng. 6: 19, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Khetkorn W., Rastogi R.P., Incharoensakdi A. et al.: Microalgal hydrogen production–a review.–Bioresour. Technol. 243: 1194–1206, 2017.CrossRefGoogle Scholar
  16. MacKinney G.: Absorption of light by chlorophyll solutions.–J. Biol.Chem. 140: 315–322, 1941.Google Scholar
  17. Maneeruttanarungroj C., Lindblad P., Incharoensakdi A.: A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production.–Int. J. Hydrogen Energ. 35: 13193–13199, 2010.CrossRefGoogle Scholar
  18. Masukawa H., Nakamura K., Mochimaru M. et al.: Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria.–Biohydrogen 2: 63–66, 2001.CrossRefGoogle Scholar
  19. Masukawa H., Mochimaru M, Sakurai H.: Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. 7120.–Appl. Microbiol. Biot. 58: 618–624, 2002.CrossRefGoogle Scholar
  20. Melis A., Zhang L.P., Forestier M. et al.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.–Plant Physiol. 122: 127–136, 20CrossRefPubMedPubMedCentralGoogle Scholar
  21. Møller K.T., Jensen T.R., Akiba E. et al.: Hydrogen–A sustainable energy carrier.–Prog. Nat. Sci. 27: 34–40, 2017.CrossRefGoogle Scholar
  22. Park J.I., Lee J., Sim S.J. et al.: Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora.–Biotechnol. Bioproc. E. 14: 307–315, 2009.CrossRefGoogle Scholar
  23. Patel S., Madamwar D.: Photohydrogen production from a coupled system of Halobacterium halobium and Phormidium valderianum.–Int. J. Hydrogen Energ. 19: 733–738, 1994.CrossRefGoogle Scholar
  24. Raksajit W., Satchasataporn K., Lehto K. et al: A. Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005.–Int. J. Hydrogen Energ. 37: 18791–18797, 2012.CrossRefGoogle Scholar
  25. Reddy P.M., Spiller H., Albrecht S.L. et al.: Photodissimilation of fructose to H2 and CO2 by a dinitrogen fixing cyanobacterium, Anabaena variabilis.–Appl. Environ. Microb. 62: 1220–1226, 1996.Google Scholar
  26. Stanier R.Y., Kunisawa R., Mandel M. et al.: Purification and properties of unicellular blue-green algae (order Chroococcales).–Bacteriol. Rev. 35: 171–205, 1971.PubMedPubMedCentralGoogle Scholar
  27. Tamagnini P., Axelsson R., Lindberg P. et al.: Hydrogenase and hydrogen metabolism of cyanobacteria.–Microbiol. Mol. Biol. Rev. 66: 1–20, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tamagnini P., Leitão E., Oliveira P. et al.: Cyanobacterial hydrogenase: diversity, regulation and applications.–FEMS Microbiol. Rev. 31: 692–720, 2007.CrossRefPubMedGoogle Scholar
  29. Tsygankov A.A., Kosourov S.N., Tolstygina I.V. et al.: Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions.–Int. J. Hydrogen Energ. 31: 1574–1584, 2006.CrossRefGoogle Scholar
  30. Yeager C.M., Milliken C.E., Bagwell C.E. et al.: Evaluation of experimental conditions that influence hydrogen production among heterocystous cyanobacteria.–Int. J. Hydrogen Energ. 36: 7487–7499, 2011.CrossRefGoogle Scholar
  31. Yoshino F., Ikeda H., Masukawa H. et al.: High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity.–J. Mar. Biotechnol. 9: 101–112, 2007.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • P. Yodsang
    • 1
    • 2
  • W. Raksajit
    • 3
  • E-M. Aro
    • 4
  • P. Mäenpää
    • 4
  • A. Incharoensakdi
    • 1
  1. 1.Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.King Mongkut’s University of Technology Thonburi (Ratchaburi Campus)RatchaburiThailand
  3. 3.Program of Animal Health Technology, Department of Veterinary Technology, Faculty of Veterinary TechnologyKasetsart UniversityBangkokThailand
  4. 4.Laboratory of Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland

Personalised recommendations