Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 254–264 | Cite as

Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes

  • C. Kotakis
  • P. Akhtar
  • O. Zsiros
  • G. Garab
  • P. H. Lambrev
Article

Abstract

The principal function of the thylakoid membrane depends on the integrity of the lipid bilayer, yet almost half of the thylakoid lipids are of non-bilayer-forming type, whose exact functions are not fully understood. Non-bilayer lipids can be extruded from the membrane in the presence of high concentrations of co-solutes. We applied 2 M sucrose to induce lipid phase separation in isolated thylakoid membranes, following consequent structural and physiological effects. Circular dichroism spectroscopy indicated significant changes in the chiral macro-arrangement of the pigment–protein complexes, which were reversed after washing out the co-solute. Similarly, merocyanine-540 fluorescence suggested reversible changes in the lipid phases. The PSII function, as tested by chlorophyll fluorescence induction transients and time-resolved fluorescence, was almost unaffected. However, the presence of sucrose dramatically increased the PSII thermostability, which can partly be explained by a direct osmolyte effect and partly by the lipid phase separation stabilizing the stacked membrane.

Additional key words

circular dichroism merocyanine-540 non-bilayer lipids osmolyte time-resolved fluorescence spectroscopy 

Abbreviation

CD

circular dichroism

Chl

chlorophyll

DAES

decay-associated emission spectra

DGDG

digalactosyldiacylglycerol

IRF

instrument response function

MC540

merocyanine-540

MGDG

monogalactosyl-diacylglycerol

PG

phosphatidylglycerol

psi

polymer and salt induced

SQDG

sulfoquinosyl-diacylglycerol

TCSPC

time-correlated single-photon counting

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_782_MOESM1_ESM.pdf (202 kb)
Supplementary material, approximately 202 KB.
11099_2018_782_MOESM2_ESM.pdf (208 kb)
Supplementary material, approximately 207 KB.
11099_2018_782_MOESM3_ESM.pdf (112 kb)
Supplementary material, approximately 112 KB.

References

  1. Akhtar P., Lingvay M., Kiss T. et al.: Excitation energy transfer between light-harvesting complex II and photosystem I in reconstituted membranes.–Biochim. Biophys. Acta 1857: 462–472, 2016.CrossRefPubMedGoogle Scholar
  2. Barzda V., Istokovics A., Simidjiev I., Garab G.: Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment-protein complexes. Light-induced reversible structural changes associated with energy dissipation.–Biochemistry 35: 8981–8985, 1996.CrossRefPubMedGoogle Scholar
  3. Bernik D., Tymczyszyn E., Daraio M.E., Negri R.M.: Fluorescent dimers of merocyanine 540 (MC540) in the gel phase of phosphatidylcholine liposomes.–Photochem. Photobiol. 70: 40–48, 1999.CrossRefGoogle Scholar
  4. Broess K., Trinkunas G., van Hoek A. et al.: Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters.–Biochim. Biophys. Acta 1777: 404–409, 2008.CrossRefPubMedGoogle Scholar
  5. Cseh Z., Rajagopal S., Tsonev T. et al.: Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity.–Biochemistry 39: 15250–15257, 2000.CrossRefPubMedGoogle Scholar
  6. Demé B., Cataye C., Block M.A. et al.: Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids.–FASEB J. 28: 3373–3383, 2014.CrossRefPubMedGoogle Scholar
  7. Douce R., Joyard J.: Biosynthesis of thylakoid membrane lipids.–In: Ort D.R., Yocum C.F. (ed.): Oxygenic Photosynthesis: The Light Reactions. Pp. 69–101. Kluwer Academic Publishers, Dordrecht 1996.Google Scholar
  8. Garab G., Faludi-Daniel A., Sutherland J.C., Hind G.: Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates - information from circular differential scattering.–Biochemistry 27: 2425–2430, 1988a.CrossRefGoogle Scholar
  9. Garab G., Kieleczawa J., Sutherland J.C. et al: Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll-b-less mutant of barley as revealed by circular-dichroism.–Photochem. Photobiol. 54: 273–281, 1991.CrossRefGoogle Scholar
  10. Garab G., Lohner K., Laggner P., Farkas T.: Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis.–Trends Plant Sci. 5: 489–494, 2000.CrossRefPubMedGoogle Scholar
  11. Garab G., Ughy B., Goss R.: Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes.–In: Nakamura Y., Li-Beisson Y. (ed.): Lipids in Plant and Algae Development. Pp. 127–157. Springer, Dordrecht 2016.CrossRefGoogle Scholar
  12. Garab G., Ughy B., Waard P. et al.: Lipid polymorphism in chloroplast thylakoid membranes-as revealed by (31) P-NMR and time-resolved merocyanine fluorescence spectroscopy.–Sci. Rep. 7: 13343, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Garab G., van Amerongen H.: Linear dichroism and circular dichroism in photosynthesis research.–Photosynth. Res. 101: 135–146, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garab G., Wells S., Finzi L., Bustamante C.: Helically organized macroaggregates of pigment protein complexes in chloroplasts - evidence from circular intensity differential scattering.–Biochemistry 27: 5839–5843, 1988b.CrossRefPubMedGoogle Scholar
  15. Goltsev V., Yordanov I., Tsonev T.: Evaluation of relative contribution of initial and variable chlorophyll fluorescence measured at different temperatures.–Photosynthetica 30: 629–643, 1994.Google Scholar
  16. Goss R., Lohr M., Latowski D. et al.: Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation.–Biochemistry 44: 4028–4036, 2005.CrossRefPubMedGoogle Scholar
  17. Goss R., Oroszi S., Wilhelm C.: The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants.–Physiol. Plantarum 131: 496–507, 2007.CrossRefGoogle Scholar
  18. Holzwarth A.R., Miloslavina Y., Nilkens M., Jahns P.: Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence.–Chem. Phys. Lett. 483: 262–267, 2009.CrossRefGoogle Scholar
  19. Jahns P., Latowski D., Strzalka K.: Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids.–BBA-Bioenergetics 1787: 3–14, 2009.CrossRefPubMedGoogle Scholar
  20. Janik E., Bednarska J., Zubik M. et al.: Molecular architecture of plant thylakoids under physiological and light stress conditions: A study of lipid-light-harvesting complex II model membranes.–Plant Cell 25: 2155–2170, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kirchhoff H., Haase W., Wegner S. et al.: Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast.–Biochemistry 46: 11169–11176, 2007.CrossRefPubMedGoogle Scholar
  22. Kouřil R., Lazár D., Ilík P. et al.: High-temperature induced chlorophyll fluorescence rise in plants at 40–50 °C: Experimental and theoretical approach.–Photosynth. Res. 81: 49–66, 2004.CrossRefPubMedGoogle Scholar
  23. Kovács L., Damkjaer J., Kereïche S. et al.: Lack of the lightharvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts.–Plant Cell 18: 3106–3120, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kowalewska L., Mazur R., Suski S. et al.: Three-dimensional visualization of the internal plastid membrane network during runner bean chloroplast biogenesis. Dynamic model of the tubular-lamellar transformation.–Plant Cell 28: 875–891, 2016.PubMedPubMedCentralGoogle Scholar
  25. Krishna M., Periasamy N.: Fluorescence of organic dyes in lipid membranes: site of solubilization and effects of viscosity and refractive index on lifetimes.–J. Fluoresc. 8: 81–91, 1998.CrossRefGoogle Scholar
  26. Krumova S.B., Dijkema C., de Waard P. et al.: Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR.–BBA-Biomembranes 1778: 997–1003, 2008a.CrossRefPubMedGoogle Scholar
  27. Krumova S.B., Koehorst R.B.M., Bóta A. et al.: Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine.–Biochim. Biophys. Acta 1778: 2823–2833, 2008b.CrossRefPubMedGoogle Scholar
  28. Krumova S.B., Laptenok S.P., Kovács L. et al.: Digalactosyldiacylglycerol- deficiency lowers the thermal stability of thylakoid membranes.–Photosynth. Res. 105: 229–242, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Langner M., Hui S.W.: Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellarhexagonal transition of phosphatidylethanolamine bilayers.–Biochim. Biophys. Acta 1415: 323–330, 1999.CrossRefPubMedGoogle Scholar
  30. Latowski D., Akerlund H.E., Strzałka K.: Violaxanthin deepoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity.–Biochemistry 43: 4417–4420, 2004.CrossRefPubMedGoogle Scholar
  31. Miloslavina Y., Wehner A., Lambrev P.H. et al.: Far-red fluorescence: A direct spectroscopic marker for LHCII oligomers forming in non-photochemical quenching.–FEBS Lett. 582: 3625–3631, 2008.CrossRefPubMedGoogle Scholar
  32. Mitchell P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.–Biol. Rev. Camb. Philos. 41: 445–501, 1966.CrossRefGoogle Scholar
  33. Nagy G., Szabó M., Ünnep R. et al.: Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy.–Photosynth. Res. 111: 71–79, 2012.CrossRefPubMedGoogle Scholar
  34. Nagy G., Ünnep R., Zsiros O. et al.: Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo.–P. Natl. Acad. Sci. USA 111: 5042–5047, 2014.CrossRefGoogle Scholar
  35. Pal S.K., Sukul D., Mandal D., Bhattacharyya K.: Solvation dynamics of DCM in lipid.–J. Phys. Chem. B 104: 4529–4531, 2000.CrossRefGoogle Scholar
  36. Páli T., Garab G., Horváth L.I., Kóta Z.: Functional significance of the lipid-protein interface in photosynthetic membranes.–Cell Mol. Life Sci. 60: 1591–1606, 2003.CrossRefPubMedGoogle Scholar
  37. Posselt D., Nagy G., Kirkensgaard J.J. et al.: Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes–periodicity and structural flexibility of the stroma lamellae.–Biochim. Biophys. Acta 1817: 1220–1228, 2012.CrossRefPubMedGoogle Scholar
  38. Pueyo J.J., Alfonso M., Andrés C., Picorel R.: Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium.–Biochim. Biophys. Acta 1554: 29–35, 2002.CrossRefPubMedGoogle Scholar
  39. Roelofs T.A., Lee C.-H., Holzwarth A.R.: Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II α- and β-units.–Biophys. J. 61: 1147–1163, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Simidjiev I., Barzda V., Mustárdy L., Garab G.: Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II.–Biochemistry 37: 4169–4173, 1998.CrossRefPubMedGoogle Scholar
  41. Simidjiev I., Stoylova S., Amenitsch H. et al.: Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro.–P. Natl. Acad. Sci. USA 97: 1473–1476, 2000.CrossRefGoogle Scholar
  42. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient.–J. Photoch. Photobio. B 104: 236–257, 2011.CrossRefGoogle Scholar
  43. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 463–495. Springer, Dordrecht 2004.Google Scholar
  44. Stratt R.M., Maroncelli M.: Nonreactive dynamics in solution: The emerging molecular view of solvation dynamics and vibrational relaxation.–J. Phys. Chem. 100: 12981–12996, 1996.CrossRefGoogle Scholar
  45. Tóth T.N., Rai N., Solymosi K. et al.: Fingerprinting the macroorganisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy.–BBA-Bioenergetics 1857: 1479–1489, 2016.CrossRefPubMedGoogle Scholar
  46. Tsvetkova N.M., Apostolova E.L., Brain A.P. et al.: Factors influencing PSII particle array formation in Arabidopsis thaliana chloroplasts and the relationship of such arrays to the thermostability of PS II.–BBA-Bioenergetics 1228: 201–210, 1995.CrossRefGoogle Scholar
  47. Ünnep R., Zsiros O., Solymosi K. et al.: The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering.–BBA-Bioenergetics 1837: 1572–1580, 2014.CrossRefPubMedGoogle Scholar
  48. van der Weij-de Wit C.D., Ihalainen J.A., van Grondelle R., Dekker J.P.: Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy.–Photosynth. Res. 93: 173–182, 2007.CrossRefPubMedGoogle Scholar
  49. van Eerden F.J., de Jong D.H., de Vries A.H. et al.: Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations.–Biochim. Biophys. Acta 1848: 1319–1330, 2015.CrossRefPubMedGoogle Scholar
  50. Williams W., Brain A., Dominy P.: Induction of non-bilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to therthermal stability of Photosystem II.–BBA-Bioenergetics 1099: 137–144, 1992.CrossRefGoogle Scholar
  51. Williams W., Gounaris K.: Stabilisation of PS-II-mediated electron transport in oxygen-evolving PS II core preparations by the addition of compatible co-solutes.–Biochim. Biophys. Acta 1100: 92–97, 1992.CrossRefPubMedGoogle Scholar
  52. Williams W.P.: The physical properties of thylakoid membrane lipids and their relation to photosynthesis.–In: Siegenthaler P.-A., Murata N. (ed.): Lipids in Photosynthesis: Structure, Function and Genetics. Pp. 103–118. Springer, Dordrecht 1998.Google Scholar
  53. Yamamoto H.Y., Higashi R.: Violaxanthin de-epoxidase: lipid composition and substrate specificity.–Arch. Biochem. Biophys. 190: 514–522, 1978.CrossRefPubMedGoogle Scholar
  54. Yancey P.H.: Compatible and counteracting solutes.–In: Strange K. (ed.): Cellular and Molecular Physiology of Cell Volume Regulation. Pp. 81–109. CRC Press, Boca Raton 1994.Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • C. Kotakis
    • 1
  • P. Akhtar
    • 1
    • 2
  • O. Zsiros
    • 1
  • G. Garab
    • 1
    • 3
  • P. H. Lambrev
    • 1
  1. 1.Institute of Plant Biology, Biological Research CentreHungarian Academy of SciencesSzegedHungary
  2. 2.Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
  3. 3.Department of Physics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic

Personalised recommendations