, Volume 56, Issue 1, pp 132–138 | Cite as

Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae

  • R. Kaňa
Brief Communication


The light-induced nonphotochemical quenching (NPQ) can safely dissipate excess of absorbed light to heat. Here we describe an application of spectrally resolved fluorescence induction (SRFI) method for studying spectral variability of NPQ. The approach allows detection of spectrally-resolved nonphotochemical quenching (NPQλ) representing NPQ dependency on fluorescence emission wavelength in the whole spectral range of fluorescence emission. The experimental approach is briefly described and NPQλ is studied for the cryptophyte alga Rhodomonas salina and for green alga Chlorella sp. We confirm presence of NPQλ only in membrane-bound antennae (chlorophyll a/c antennae) and not in phycobiliproteins in lumen in cryptophyte and show that NPQλ is inhibited in the whole spectral range by NPQ inhibitors in Chlorella sp. We discuss variability in the quenching in the particular spectral ranges and applicability of the NPQλ parameter to study quenching locus in vivo.

Additional key words

fluorescence parameters light-harvesting complex photoprotection photosynthesis photosystem II 



chlorophyll a/c antennae complexes of cryptophyte






fluorescence intensity at particular irradiance/time of measuring protocol


minimal fluorescence intensity for open reaction center


maximal fluorescence intensity for closed reaction center measured with dark-adapted sample


maximal fluorescence intensity for closed reaction center measured with light-adapted sample


nonphotochemical quenching of chlorophyll a fluorescence


spectrally resolved nonphotochemical quenching of fluorescence


reaction center


fluorescence decrease ratio


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_780_MOESM1_ESM.pdf (167 kb)
Supplementary material, approximately 167 KB.


  1. Acuña A.M., Kaňa R., Gwizdala M. et al: Synechocystis PCC 6803 during lightinduced state transitions.–Photosynth. Res. 130: 237–249, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belgio E., Duffy C.D.P., Ruban A.V.: Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop.–Phys. Chem. Chem. Phys. 15: 12253–12261, 2013.CrossRefPubMedGoogle Scholar
  3. Belgio E., Kapitonova E., Chmeliov J. et al.: Economic photoprotection in photosystem II that retains a complete lightharvesting system with slow energy traps.–Nat. Commun. 5: 4433, 2014.CrossRefPubMedGoogle Scholar
  4. Bernat G., Steinbach G., Kaňa R. et al.: On the origin of the slow M to T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses.–Photosynth. Res. DOI: 10.1007/s11120-017-0458-8, in press, 2018.Google Scholar
  5. Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbancy changes, fluorescence and photosynthesis in leaves of Hedera canariensis.–Photosynth. Res. 25: 173–185, 19CrossRefPubMedGoogle Scholar
  6. Briantais J.M., Vernotte C., Picaud M. et al.: Quantitative study of the slow decline of chlorophyll alpha-fluorescence in isolated-chloroplasts.–Biochim. Biophys. Acta 548: 128–138, 1979.CrossRefPubMedGoogle Scholar
  7. Bruce D., Samson G., Carpenter C.: The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.–Biochemistry 36: 749–755, 1997.CrossRefPubMedGoogle Scholar
  8. Büchel C.: Evolution and function of light harvesting proteins.–J. Plant Physiol. 172: 62–75, 2015.CrossRefPubMedGoogle Scholar
  9. Cheregi O., Kotabová E., Prášil O. et al.: Presence of state transitions in the cryptophyte alga Guillardia theta.–J. Exp. Bot. 66: 6461–6470, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cser K., Vass I.: Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803.–BBA-Bioenergetics 1767: 233–243, 2007.CrossRefPubMedGoogle Scholar
  11. Delphin E., Duval J.C., Etienne A.L. et al.: Delta pH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae.–Plant Physiol. 118: 103–113, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Demmig-Adams B., Garab G., Adams III W. et al.: Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer, Dordrecht 2014.Google Scholar
  13. Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change.–BBA-Bioenergetics 1847: 468–485, 2015.CrossRefPubMedGoogle Scholar
  14. Franck F., Dewez D., Popovic R.: Changes in the roomtemperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.–Photoch. Photobio. 81: 431–436, 2005.CrossRefGoogle Scholar
  15. Franck F., Juneau P., Popovic R.: Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature.–BBA-Bioenergetics 1556: 239–246, 2002.CrossRefPubMedGoogle Scholar
  16. Funk C., Alami M., Tibiletti T. et al.: High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta.–BBA-Bioenergetics 1807: 841–846, 20CrossRefPubMedGoogle Scholar
  17. Gilmore A.M., Yamamoto H.Y.: Dark induction of zeaxanthindependent nonphotochemical fluorescence quenching mediated by ATP.–P. Natl. Acad. Sci. USA 89: 1899–1903, 1992.CrossRefGoogle Scholar
  18. Giovagnetti V., Ware M.A., Ruban A.V.: Assessment of the impact of photosystem I chlorophyll fluorescence on the pulseamplitude modulated quenching analysis in leaves of Arabidopsis thaliana.–Photosynth. Res. 125: 179–189, 20CrossRefPubMedGoogle Scholar
  19. Holzwarth A.R., Lenk D., Jahns P.: On the analysis of nonphotochemical chlorophyll fluorescence quenching curves: I. Theoretical considerations.–BBA-Bioenergetics 1827: 786–792, 2013.CrossRefPubMedGoogle Scholar
  20. Holzwarth A.R., Miloslavina Y., Nilkens M. et al.: Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence.–Chem. Phys. Lett. 483: 262–267, 2009.CrossRefGoogle Scholar
  21. Johnson M.P., Ruban A.V.: Photoprotective Energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII).–J. Biol. Chem. 284: 23592–23601, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kaftan D., Trtilek M., Kroon B. et al.: Fast-response doublemodulation fluorometer.–In: Garab G. (ed.): International Congress on Photosynthesis, Vol. 5. Pp. 4297–4300. Kluwer Academic Publishers, Budapest 1997.Google Scholar
  23. Kaňa R., Govindjee: Role of ions in the regulation of lightharvesting.–Front. Plant Sci. 7: 1849, 2016.PubMedPubMedCentralGoogle Scholar
  24. Kaňa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition.–BBA-Bioenergetics 1817: 1237–1247, 2012a.CrossRefPubMedGoogle Scholar
  25. Kaňa R., Kotabová E., Kopečná J. et al.: Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia.–FEBS Lett. 590: 1076–1085, 2016.CrossRefPubMedGoogle Scholar
  26. Kaňa R., Kotabová E., Sobotka R. et al.: Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae.–PLoS ONE 7: e29700, 2012b.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kaňa R., Prášil O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942).–Biochim. Biophys. Acta 1787: 1170–1178, 2009a.CrossRefPubMedGoogle Scholar
  28. Kaňa R., Prášil O., Mullineaux C.W.: Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted.–FEBS Lett. 583: 670–674, 2009b.CrossRefPubMedGoogle Scholar
  29. Kaňa R., Vass I.: Thermoimaging as a tool for studying lightinduced heating of leaves: Correlation of heat dissipation with the efficiency of photosystem II photochemistry and nonphotochemical quenching.–Environ. Exp. Bot. 64: 90–96, 2008.CrossRefGoogle Scholar
  30. Komura M., Yamagishi A., Shibata Y. et al.: Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy.–BBABioenergetics 1797: 331–338, 2010.CrossRefGoogle Scholar
  31. Kotabová E., Jarešova J., Kaňa R. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems.–Biochim. Biophys. Acta 1837: 734–743, 2014.CrossRefPubMedGoogle Scholar
  32. Kotabová E., Kaňa R., Jarešova J. et al.: Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation.–FEBS Lett. 585: 1941–1945, 2011.CrossRefPubMedGoogle Scholar
  33. Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.–Photosynth. Res. 79: 209–218, 2004.CrossRefPubMedGoogle Scholar
  34. Krüger T.P.J., Ilioaia C., Johnson M.P. et al.: The specificity of controlled protein disorder in the photoprotection of plants.–Biophys. J. 105: 1018–1026, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Krüger T.P.J., Wientjes E., Croce R. et al.: Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes.–P. Natl. Acad. Sci. USA 108: 13516–13521, 2011.CrossRefGoogle Scholar
  36. Krupnik T., Kotabová E., van Bezouwen L.S. et al.: A reaction centre-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga Cyanidioschyzon merolae.–J. Biol. Chem. 288: 23529–23542., 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kulasek M., Bernacki M.J., Ciszak K. et al.: Contribution of PsbS Function and stomatal conductance to foliar temperature in higher plants.–Plant Cell Physiol. 57: 1495–1509, 2016.PubMedPubMedCentralGoogle Scholar
  38. Lakowicz J.R.: Principles of Fluorescence Spectroscopy. Springer, New York 2006.CrossRefGoogle Scholar
  39. Lambrev P.H., Nilkens M., Miloslavina Y. et al.: Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves.–Plant Physiol. 152: 1611–1624, 2010.CrossRefPubMedGoogle Scholar
  40. Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise.–J. Theor. Biol. 335: 249–264, 2013.CrossRefPubMedGoogle Scholar
  41. Lazár D.: Parameters of photosynthetic energy partitioning.–J. Plant Physiol. 175: 131–147, 2015.CrossRefPubMedGoogle Scholar
  42. Li X.P., Björkman O., Shih C. et al: A pigment-binding protein essential for regulation of photosynthetic light harvesting.–Nature 403: 391–395, 2000.CrossRefPubMedGoogle Scholar
  43. MacPherson A.N., Hiller R.G.: Algae with chlorophyll c in lightharvesting antennae in photosynthesis.–In: Green B.R. and Parson W.W. (ed.): Light-Harvesting Antennas in Photosynthesis. Pp. 323–352. Kluwer Acad. Publ., Dordrecht 2003.CrossRefGoogle Scholar
  44. Miloslavina Y., Wehner A., Lambrev P.H. et al.: Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching.–FEBS Lett. 582: 3625–3631, 2008.CrossRefPubMedGoogle Scholar
  45. Miyake H., Komura M., Itoh S. et al.: Multiple dissipation components of excess light energy in dry lichen revealed by ultrafast fluorescence study at 5 K.–Photosynth. Res. 110: 39–48, 2011.CrossRefPubMedGoogle Scholar
  46. Niyogi K.K., Björkman O., Grossman A.R.: The roles of specific xanthophylls in photoprotection.–P. Natl. Acad. Sci. USA 94: 14162–14167, 1997.CrossRefGoogle Scholar
  47. Novotný J.P., Chugtai A.A., Kostrouchová M. et al.: Trichoplax adhaerens reveals a network sensitive to 9-cis-retinoic acid at the base of metazoan evolution.–Peer J. 5: e3789, 2017.CrossRefPubMedGoogle Scholar
  48. Ohad I., Raanan H., Keren N. et al.: Light-Induced changes within photosystem ii protects microcoleus sp in biological desert sand crusts against excess light.–PLoS ONE 5: e11000, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Papageorgiou G.C., Govindjee: Chlorophyll a Fluorescence. A Signature of Photosynthesis. Springer, Dordrecht 2004.CrossRefGoogle Scholar
  50. Passarini F., Wientjes E., van Amerongen H. et al.: Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive.–BBA-Bioenergetics 1797: 501–508, 2010.CrossRefPubMedGoogle Scholar
  51. Rizzo F., Zucchelli G., Jennings R. et al.: Wavelength dependence of the fluorescence emission under conditions of open and closed Photosystem II reaction centres in the green alga Chlorella sorokiniana.–BBA-Bioenergetics 1837: 726–733, 20CrossRefPubMedGoogle Scholar
  52. Ruban A.V., Horton P.: Spectroscopy of nonphotochemical and photochemical quenching of chlorophyll fluorescence in leaves; evidence for a role of the light-harvesting complex of photosystem-ii in the regulation of energy dissipation.–Photosynth. Res. 40: 181–190, 1994.CrossRefPubMedGoogle Scholar
  53. Ruban A.V., Johnson M.P., Duffy C.D.P.: The photoprotective molecular switch in the photosystem II antenna.–BBABioenergetics 1817: 167–181, 2012.CrossRefGoogle Scholar
  54. Ruban A.V., Lavaud J., Rousseau B. et al.: The super-excess energy dissipation in diatom algae: comparative analysis with higher plants.–Photosynth. Res. 82: 165–175, 2004.CrossRefPubMedGoogle Scholar
  55. Santabarbara S., Jennings R.C.: The size of the population of weakly coupled chlorophyll pigments involved in thylakoid photoinhibition determined by steady-state fluorescence spectroscopy.–BBA-Bioenergetics 1709: 138–149, 2005.CrossRefPubMedGoogle Scholar
  56. Schreiber U.: Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview.–In: Papageorgiou G.C. and {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.CrossRefGoogle Scholar
  57. Vass I.: Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex.–Physiol. Plantarum 142: 6–16, 2011.CrossRefGoogle Scholar
  58. Xu P.Q., Tian L.J., Kloz M. et al.: Molecular insights into zeaxanthin-dependent quenching in higher plants.–Sci. Rep. 5: 13679, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zimorski V., Ku C., Martin W.F. et al.: Endosymbiotic theory for organelle origins.–Curr. Opin. Microbiol. 22: 38–48, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Institute of MicrobiologyCzech Academy of SciencesTřeboňCzech Republic

Personalised recommendations