Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 306–315 | Cite as

Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll f-producing cyanobacterium

  • Y. Li
  • N. Vella
  • M. Chen
Article

Abstract

Halomicronema hongdechloris is a chlorophyll (Chl) f-producing cyanobacterium. Chl f biosynthesis is induced under far-red light, extending its photosynthetically active radiation range to 760 nm. In this study, PSI complexes were isolated and purified from H. hongdechloris, grown under white light (WL) and far-red light (FR), by a combination of density gradient ultracentrifugation and chromatographic separation. WL-PSI showed similar pigment composition as that of Synechocystis 6803, using Chl a in the reaction center. Both Chl a and f were detected in the FR-PSI, although Chl f was a minor component (~8% of total Chl). The FR-PSI showed a maximal fluorescence emission peak of 750 nm at 77 K, which is red-shifted ~20 nm compared to the 730 nm recorded from the WL-PSI. The absorption peaks of P700 for WLPSI and FR-PSI were 699 nm and 702 nm, respectively. The function of Chl f in FR-PSI is discussed.

Additional key words

cyanobacteria far-red light photoacclimation oxygenic photosynthesis red-shifted chlorophyll 

Abbreviation

APC

allophycocyanin

CCA

complementary chromatic adaptation

Chl

chlorophyll

FR

730 nm light-emitting diodes

DoDM

β-dodecyl maltoside

FaRLiP

far-red light photoacclimation

FR

far-red light

FR-PSI

isolated PSI from 730 nm LED-illuminated culture

OG

n-octyl-β-D-glucopyranoside

PC

phycocyanin

TMPD

N,N,N',N'-tetramethyl-p-phenylenediamine

WL

white fluorescent light

WL-PSI

isolated PSI from white light culture

6803-PSI

purified PSI complexes from Synechocystis 6803

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_776_MOESM1_ESM.pdf (138 kb)
Fig. 1S. The HPLC chromatographs for the sucrose density band isolated from white light (WL) and far red light (FR) grown Halomicronema hongdechloris. The solid black (FR-2) and grey line (FR-1) represent the chromatographs for the FR band 2 and 1 (Fig.1), respectively. The dash black (WL-2) and grey line (WL-1) represent the chromatographs for the WL band 2 and 1 (Fig.1), respectively. Carotenoids, Chl f, Chl a, Chl a’, β-carotene and pheophytin a are assigned based on their retention time and online spectra.
11099_2018_776_MOESM2_ESM.pdf (134 kb)
Fig. 2S. Sequence alignment for PsaL’s detected from isolated PSI complexes of H. hongdechloris. PsaL (1JB0_L) from PSI crystal structure of Synechococcus elongates is used as a reference. The residues ligating chlorophyll a’s are highlighted by asterisk “*”.
11099_2018_776_MOESM3_ESM.pdf (94 kb)
Table 1S. LC-MS/MS peptide determinations for polypeptides resolved on SDS-PAGE (Fig. 3)

References

  1. Airs R.L., Temperton B., Sambles C. et al.: Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and nearinfrared radiation.–FEBS Lett. 588: 3770–3777, 2014.CrossRefPubMedGoogle Scholar
  2. Akutsu S., Fujinuma D., Furukawa H. et al.: Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1isolated from Lake Biwa.–Photochem. Photobiol. 33: 35–40, 2011.Google Scholar
  3. Amunts A., Toporik H., Borovikova A. et al.: Structure determination and improved model of plant photosystem I.–J. Biol. Chem. 285: 3478–3486, 2010.CrossRefPubMedGoogle Scholar
  4. Barber J.: Photosynthetic generation of oxygen.–Philos. T. R. Soc. B 363: 2665–2674, 2008.CrossRefGoogle Scholar
  5. Barth P., Lagoutte B., Sétif P.: Ferredoxin reduction by photosystem I from Synechocystis sp. PCC 6803: toward an understanding of the respective roles of subunits PsaD and PsaE in ferredoxin binding.–Biochemistry 37: 16233–16241, 1998.CrossRefPubMedGoogle Scholar
  6. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.–Nature 426: 630–635, 2003.CrossRefPubMedGoogle Scholar
  7. Chen M., Blankenship R.: Expanding the solar spectrum used by photosynthesis.–Trends Plant Sci. 16: 427–431, 2011.CrossRefPubMedGoogle Scholar
  8. Chen M., Li Y., Birch D. et al: A cyanobacterium that contains chlorophyll f–a red-absorbing photopigment.–FEBS Lett. 586: 3249–3254, 2012.CrossRefPubMedGoogle Scholar
  9. Chen M., Schliep M., Willows R. et al: A red-shifted chlorophyll.–Science 329: 1318–1319, 2010.CrossRefPubMedGoogle Scholar
  10. Croce R., van Amerongen H.: Light-harvesting in photosystem I.–Photosynth. Res. 116: 153–166, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. El-Khouly M.E., El-Mohsnawy E., Fukuzumi S.: Solar energy conversion: From natural to artificial photosynthesis.–J. Photoch. Photobio. C 31: 36–83, 2017.CrossRefGoogle Scholar
  12. El-Mohsnawy E., Kopczak M.J., Schlodder E. et al.: Structure and function of intact photosystem I monomers from the cyanobacterium Thermosynechococcus elongatus.–Biochemistry49: 4740–4751, 20CrossRefPubMedGoogle Scholar
  13. Fromme P., Jordan P., Krauß N.: Structure of photosystem I.–BBA-Bioenergetics 1507: 5–31, 2001.CrossRefPubMedGoogle Scholar
  14. Gan F., Bryant D.A.: Adaptive and acclimative responses of cyanobacteria to far-red light.–Environ. Microbiol. 17: 3450–3465, 2015.CrossRefPubMedGoogle Scholar
  15. Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.–Science 345: 1312–1317, 2014.CrossRefPubMedGoogle Scholar
  16. Golbeck, J.H.: Photosystem I in cyanobacteria.–In: Bryant D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 319–360. Springer, Dordrecht 1994.CrossRefGoogle Scholar
  17. Golub M., Hejazi M., Kölsch A. et al.: Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering.–Photosynth. Res. 133: 163–173, 2017.CrossRefPubMedGoogle Scholar
  18. Goodwint W.: Biochemistry of pigments.–In Waterman T.H. (ed.): The Physiology of Crustacea. Pp. 101–140. Academic Press, New York and London 1960.Google Scholar
  19. Grotjohann I., Fromme P.: Structure of cyanobacterial photosystem I.–Photosynth. Res. 85: 51–72, 2005.CrossRefPubMedGoogle Scholar
  20. Hiyama T., Ke B.: Difference spectra and extinction coefficients of P 700.–BBA-Bioenergetics. 267: 160–171, 1972.CrossRefPubMedGoogle Scholar
  21. Hou H.J., Allakhverdiev S.I., Najafpour M.M. et al.: Current challenges in photosynthesis: from natural to artificial.–Front Plant Sci. 5: 232, 2014.PubMedPubMedCentralGoogle Scholar
  22. Hu Q., Miyashita H., Iwasaki I. et al: A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis.–P. Natl. Acad. Sci. USA 95: 13319–13323, 1998.CrossRefGoogle Scholar
  23. Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution.–Nature 411: 909–917, 2001.CrossRefPubMedGoogle Scholar
  24. Kruip J., Boekema E.J., Bald D. et al.: Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700. FA/FB and P700. FX) from the cyanobacterium Synechocystis PCC 6803.–J. Biol. Chem. 268: 23353–23360, 1993.PubMedGoogle Scholar
  25. Li M, Semchonok D.A., Boekema E.J., Bruce B.D.: Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.–Plant Cell 26: 1230–1245, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li Y., Cai Z.-L. Chen M.: Spectroscopic properties of chlorophyll f.–J. Phys. Chem. B 117: 11309–11317, 2013.CrossRefPubMedGoogle Scholar
  27. Li Y., Chen M.: Novel chlorophylls and new directions in photosynthesis research.–Funct. Plant Biol. 42: 493–501, 2015.CrossRefGoogle Scholar
  28. Li Y., Lin Y., Garvey C.J. et al.: Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.–BBABioenergetics 1857: 107–114, 20CrossRefGoogle Scholar
  29. Li Y., Lin Y., Loughlin P. et al.: Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f.–Front. Plant Sci. 5: 67, 2014.PubMedPubMedCentralGoogle Scholar
  30. Li Y., Scales N., Blankenship R. E. et al.: Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f.–BBA-Bioenergetics 1817: 1292–1298, 2012.CrossRefPubMedGoogle Scholar
  31. Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment.–Nature 383: 402, 1996.CrossRefGoogle Scholar
  32. Mühlenhoff U., Zhao J., Bryant D.A.: Interaction between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical crosslinking.–Eur. J. Biochem. 235: 324–331, 1996.CrossRefPubMedGoogle Scholar
  33. Nelson N., Junge W.: Structure and energy transfer in photosystems of oxygenic photosynthesis.–Annu. Rev. Biochem. 84: 659–683, 2015.CrossRefPubMedGoogle Scholar
  34. Nyhus K.J., Ikeuchi M., Inoue Y. et al.: Purification and characterization of the photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413.–J. Biol. Chem. 267: 12489–12495, 1992.PubMedGoogle Scholar
  35. Ohkubo S., Miyashita H.: A niche for cyanobacteria producing chlorophyll f within a microbial mat.–ISME J. 11: 2368–2378, 2017.CrossRefPubMedGoogle Scholar
  36. Rögner M., Nixon P.J., Diner B.A.: Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803.–J. Biol. Chem. 265: 6189–6196, 1990.PubMedGoogle Scholar
  37. Schluchter W.M., Shen G., Zhao J., Bryant D.A.: Characterization of psal and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria.–Photochem. Photobiol. 64: 53–66, 1996.CrossRefPubMedGoogle Scholar
  38. Sivakumar V., Wang R., Hastings G.: Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina.–Biophys. J. 85: 3162–3172, 20CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tomo T., Kato Y., Suzuki T. et al.: Characterization of highly purified photosystem I complexes from the chlorophyll ddominated cyanobacterium Acaryochloris marina MBIC 11017.–J. Biol. Chem. 283: 18198–18209, 2008.CrossRefPubMedGoogle Scholar
  40. Xu Q., Hoppe D., Chitnis V.P. et al.: Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL.–J. Biol. Chem. 270: 16243–16250, 1995.CrossRefPubMedGoogle Scholar
  41. Xu W., Chitnis P., Valieva A. et al.: Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX.–J. Biol. Chem. 278: 27864–27875, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.School of Life and Environmental ScienceUniversity of SydneyNSWAustralia

Personalised recommendations