, Volume 56, Issue 1, pp 150–162 | Cite as

Control of the maximal chlorophyll fluorescence yield by the QB binding site

  • O. Prášil
  • Z. S. Kolber
  • P. G. Falkowski


Differences in maximal yields of chlorophyll variable fluorescence (Fm) induced by single turnover (ST) and multiple turnover (MT) excitation are as great as 40%. Using mutants of Chlamydomonas reinhardtii we investigated potential mechanisms controlling Fm above and beyond the QA redox level. Fm was low when the QB binding site was occupied by PQ and high when the QB binding site was empty or occupied by a PSII herbicide. Furthermore, in mutants with impaired rates of plastoquinol reoxidation, Fm was reached rapidly during MT excitation. In PSII particles with no mobile PQ pool, Fm was virtually identical to that obtained in the presence of PSII herbicides. We have developed a model to account for the variations in maximal fluorescence yields based on the occupancy of the QB binding site. The model predicts that the variations in maximal fluorescence yields are caused by the capacity of secondary electron acceptors to reoxidize QA.

Additional key words

conformational change electron transport photosystem II thylakoid membrane 


2,5 DMBQ


2,6 DCBQ









fast repetition rate


initial fluorescence yield in dark-adapted sample


initial fluorescence yield in light or following preillumination


maximal fluorescence yield


Fm induced by first ST excitation in dark-adapted cells


Fm in the presence of saturating amounts of PSII herbicides


Fm induced by MT excitation


Fm induced by the second ST excitation


multiple turnover




reaction center of PSII


single turnover




functional cross-section of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2018_768_MOESM1_ESM.pdf (171 kb)
Supplementary material, approximately 171 KB.
11099_2018_768_MOESM2_ESM.pdf (152 kb)
Supplementary material, approximately 151 KB.
11099_2018_768_MOESM3_ESM.pdf (151 kb)
Supplementary material, approximately 151 KB.
11099_2018_768_MOESM4_ESM.pdf (143 kb)
Supplementary material, approximately 143 KB.
11099_2018_768_MOESM5_ESM.pdf (85 kb)
Supplementary material, approximately 84.7 KB.


  1. Amesz J., Fork D.C.: Quenching of chlorophyll fluorescence by quinones in algae and chloroplasts.–Biochim. Biophys. Acta 143: 97–107, 1967.CrossRefPubMedGoogle Scholar
  2. Berthold D.A., Babcock G.T., Yocum C.F.: A highly resolved, oxygen-evolving PSII preparation from spinach thylakoid membranes.–FEBS Lett. 134: 231–234, 1981.CrossRefGoogle Scholar
  3. Bowes J.M., Crofts A.R.: Binary oscillations in the rate of reoxidation of the primary acceptro of Photosystem II.–Biochim. Biophys. Acta 590: 373–384, 1980.CrossRefPubMedGoogle Scholar
  4. Butler W.L.: On the primary nature of fluorescence yield changes associated with photosynthesis.–P. Natl. Acad. Sci. USA 69: 3420–3422, 1972.CrossRefGoogle Scholar
  5. Butler W.L., Strasser R.J.: Tripartite model for the photochemical apparatus of green plant photosynthesis.–P. Natl. Acad. Sci USA 74: 3382–3385, 1977.Google Scholar
  6. Crofts A.R., Baroli I., Kramer D., Taoka S.: Kinetics of electrontransfer between Q(A) and Q(B) in wild-type and herbicideresistant mutants of Chlamydomonas reinhardtii.–Z. Naturforsch. C 48: 259–266, 1993.CrossRefGoogle Scholar
  7. Crofts A.R., Wraight C.A.: The electrochemical domain of photosynthesis.–BBA-Rev. Bioenergetics 726: 149–185, 1983.Google Scholar
  8. Dau H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence.–Photochem. Photobiol. 60: 1–23, 1994.CrossRefGoogle Scholar
  9. Delosme R.: [Study of fluorescence induction of green algae and chloroplasts at the beginning of intense illumination.]–Biochim. Biophys. Acta 143: 108–128, 1967. [In French]CrossRefPubMedGoogle Scholar
  10. Delosme R.: New results about chlorophyll fluorescence "in vivo".–In: Forti G., Avron M., Melandri A. (ed.): Proceedings of the 2nd International Congress on Photosynthesis Research. Pp. 187–195. Dr. W. Junk Publishers, The Hague 1971a.Google Scholar
  11. Delosme R.: [Variations in fluorescence yield of chlorophyll in vivo under the action of high intensity flashes.]–C. R. Acad. Sci. Paris 272: 2828–2831, 1971b. [In French]Google Scholar
  12. Diner B. and Mauzerall D.: The turnover times of photosynthesis and redox properties of the pool of electrons carriers between the photosystem.–Biochim. Biophys. Acta 305: 353–363, 1973.CrossRefPubMedGoogle Scholar
  13. Dubinsky Z., Falkowski P.G., Wyman K.: Light harvesting and utilization in phytoplankton.–Plant Cell Physiol. 27: 1335–1349, 1986.CrossRefGoogle Scholar
  14. Duysens L.M.N., Sweers H.E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence.–In: Studies on Microalgae and Photosynthetic Bacteria. Pp. 353–372. Japanese Society of Plant Physiologists, University of Tokyo Press, Tokyo 1963.Google Scholar
  15. Erickson J.M., Rahire M., Bennoun P. et al.: Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kDa protein of photosystem II.–P. Natl. Acad. Sci. USA 81: 3617–3621, 1984.CrossRefGoogle Scholar
  16. Falkowski P.G., Owens T.G., Ley A.C., Mauzerall D.C.: Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton.–Plant Physiol. 68: 969–973, 1981.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Falkowski P.G., Raven J.A.: Aquatic Photosynthesis (2nd ed.). Pp. 488. Princeton Univ. Press, Princeton 1997.Google Scholar
  18. France L.L., Geacintov N.E., Breton J., Valkunas L.: The dependence of the degrees of sigmoidicities of fluorescence induction curves in spinach chloroplasts on the duration of actinic pulses in pump-probe experiments.–BBABioenergetics 1101: 108–119, 1992.Google Scholar
  19. Govindjee: Photosystem II heterogeneity; the acceptor side.–Photosynth. Res. 25: 151–160, 1990.CrossRefPubMedGoogle Scholar
  20. Govindjee: 63 years since Kautsky–chlorophyll a fluorescence.–Aust. J. Plant Physiol. 22: 131–160, 1995.CrossRefGoogle Scholar
  21. Greenbaum N.L., Mauzerall D.: Effect of irradiance level on distribution of chlorophylls between PS-II and PS-I as determined from optical cross-sections.–BBA-Bioenergetics 1057: 195–207, 1991.CrossRefGoogle Scholar
  22. Greene R.M., Geider R.J., Falkowski P.G.: Effect of iron limitation on photosynthesis in a marine diatom.–Limnol. Oceanogr. 36: 1772–1782, 1991.CrossRefGoogle Scholar
  23. Guillard R.R.L., Ryther J.H.: Studies on marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacae (Cleve) Gran.–Can. J. Microbiol. 8: 229–239, 1962.CrossRefPubMedGoogle Scholar
  24. Joliot P., Joliot A.: Studies on the quenching properties of Photosystem II electron acceptor.–In: Forti G., Avron M., Melandri A. (ed.): Proceedings of the 2nd International Congress on Photosynth Research. Pp. 26–38. Dr. W Junk Publishers, The Hague 1971.Google Scholar
  25. Joliot P., Joliot A.: Evidence for a double hit process in PSII based on fluorescence studies.–BBA-Bioenergetics 462: 559–574, 1977.CrossRefPubMedGoogle Scholar
  26. Joliot P., Joliot A.: Comparative study of the fluorescence yield and of the C550 absorption change at room temperature.–Biochim. Biophys. Acta 546: 93–105, 1979.CrossRefPubMedGoogle Scholar
  27. Joliot P., Joliot A.: A photosystem II electron acceptor which is not a plastoquinone.–FEBS Lett. 134: 155–158, 1981.CrossRefGoogle Scholar
  28. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues.–Photosynth. Res. 122: 121–158, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kless H., Vermaas W.: Many combinations of amino acid sequences in a conserved region of the D1 protein satisfy photosystem II function.–J. Mol. Biol. 246: 120–131, 1995.CrossRefPubMedGoogle Scholar
  30. Koblížek M., Kaftan D., Nedbal L.: On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study.–Photosynth. Res. 68: 141–152, 2001.CrossRefPubMedGoogle Scholar
  31. Kolber Z.S., Prášil O., Falkowski P.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques. I. Defining methodology and experimental protocols.–BBABioenergetics 1367: 88–106, 1998.CrossRefGoogle Scholar
  32. Kramer D.M., Robinson H.R., Crofts A.R.: A portable multiflash kinetic fluorimeter for measurement of donor and acceptor reactions of Photosystem 2 in leaves of intact plants under field conditions.–Photosynth. Res. 26: 181–193, 1990.CrossRefPubMedGoogle Scholar
  33. Kromkamp J.C., Forster R.M.: The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology.–Eur. J. Phycol. 38: 103–112, 2003.CrossRefGoogle Scholar
  34. Lardans A., Förster B., Prášil O. et al.: Biophysical, biochemical, and physiological characterization of Chlamydomonas reinhardtii mutants with amino acid substitutions at the Ala(251) residue in the D1 protein that result in varying levels of photosynthetic competence.–J. Biol. Chem. 273: 11082–11091, 1998.CrossRefPubMedGoogle Scholar
  35. Lardans A., Gillham N.W., Boynton J.E.: Site-directed mutations at residue-251 of the Photosystem-II D1 protein of Chlamydomonas that result in a nonphotosynthetic phenotype and impair D1 synthesis and accumulation.–J. Biol. Chem. 272: 210–216, 1997.CrossRefPubMedGoogle Scholar
  36. Lavergne J.: Fluorescence induction in algae and chloroplasts.–Photochem. Photobiol. 20: 377–386, 1974.CrossRefGoogle Scholar
  37. Lavergne J., Trissl H.W.: Theory of fluorescence induction in Photosystem II–derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy-transfer between photosynthetic units.–Biophys. J. 68: 2474–2492, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lazar D., Schansker G.: Models of chlorophyll a fluorescence transients.–In: Laisk A., Nedbal L., Govindjee (ed.): Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Pp. 85–123. Springer, Dordrecht 2009.CrossRefGoogle Scholar
  39. Lee W.J., Whitmarsh J.: Photosynthetic apparatus of pea thylakoid membranes.–Plant Physiol. 89: 932–940, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leibl W., Breton J., Deprez J., Trissl H.W.: Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes.–Photosynth. Res. 22: 257–275, 1989.CrossRefPubMedGoogle Scholar
  41. Lin H., Kuzminov F.I., Park J. et al.: The fate of photons absorbed by phytoplankton in the global ocean.–Science 351: 264–267, 2016.CrossRefPubMedGoogle Scholar
  42. Mathis P., Galmiche J.M.: [The action of paramagnetic gases on a transient state induced by a laser flash in a chloroplast suspension.]–C. R. Acad. Sci. Paris 264: 1903–1906, 1967. [In French]Google Scholar
  43. Michel H., Tellenbach M., Boschetti A.: A chlorophyll b-less mutant of Chlamydomonas reinhardtii lacking in the lightharvesting chlorophyll a/b protein complex but not in its apoproteins.–Biochim. Biophys. Acta 725: 417–424, 1983.CrossRefGoogle Scholar
  44. Myers J., Graham J.-R.: The photosynthetic unit in Chlorella measured by repetiative short flashes.–Plant Physiol. 48: 282–286, 1971.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Neubauer C., Schreiber U.: The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. saturation characteristics and partial control by the photosystem II acceptor side.–Z. Naturforsch. C 42: 1246–1254, 1987.CrossRefGoogle Scholar
  46. Prášil O., Kolber Z., Berry J.A., Falkowski P.G.: Cyclic electron flow around Photosystem-II in vivo.–Photosynth. Res. 48: 395–410, 19CrossRefPubMedGoogle Scholar
  47. Robinson H.H., Crofts A.R.: Kinetics of the oxidation-reduction reactions of the photosystem II quinone acceptor complex, and the patway for deactivation.–FEBS Lett. 153: 221–226, 1983.CrossRefGoogle Scholar
  48. Robinson H.H., Crofts A.R.: Kinetics of proton uptake and the oxidation-reduction reactions of the quinone acceptor complex of PS2 from pea chloroplasts.–In: Sybesma C. (ed.): Advances in Photosynthesis Research. Pp. 477–480. Martinus Nijhoff/Dr. W. Junk, The Hague–Boston–Lancaster 1984.Google Scholar
  49. Rutherford A.W., Crofts A.R., Inoue Y.: Thermoluminiscence as a probe of photosystem II photochemistry The origin of the flash-induced glow peaks.–BBA-Bioenergetics 682: 457–465, 1982.CrossRefGoogle Scholar
  50. Samson G., Bruce D.: Origins of the low-yield of chlorophyll-a fluorescence induced by single turnover flash in spinach thylakoids.–BBA-Bioenergetics 1276: 147–153, 1996.CrossRefGoogle Scholar
  51. Samson G., Prášil O., Yaakoubd B.: Photochemical and thermal phases of chlorophyll a fluorescence.–Photosynthetica 37: 163–182, 1999.CrossRefGoogle Scholar
  52. Satoh K., Ohhashi M., Kashino Y., Koike H.: Mechanism of electron flow-through the QB site in Photosystem II. 1. Kinetics of the reduction of electron-acceptors at the QB and plastoquinone sites in Photosystem II particles from the cyanobacterium Synechococcus vulcanus.–Plant Cell Physiol. 36: 597–605, 19CrossRefGoogle Scholar
  53. Shinkarev V.P., Xu C.H., Govindjee, Wraight C.A.: Kinetics of the oxygen evolution step in plants determined from flashinduced chlorophyll a fluorescence.–Photosynth. Res. 51: 43–49, 1997.CrossRefGoogle Scholar
  54. Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chlorophyll a fluorescence: beyond the limits of the Q(A) model.–Photosynth. Res. 120: 43–58, 2014.CrossRefPubMedGoogle Scholar
  55. Schansker G., Tóth S.Z., Kovácz L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise.–Biochim. Biophys. Acta 1807: 1032–1043, 2011.CrossRefPubMedGoogle Scholar
  56. Schreiber U.: Chlorophyll fluorescence yield changes as a tool in plant physiology.–Photosynth. Res. 4: 361–373, 1984.CrossRefGoogle Scholar
  57. Schreiber U., Endo T., Mi H.L., Asada K.: Quenching analysis of chlorophyll fluorescence by the saturation pulse method - particular aspects relating to the study of eukaryotic algae and cyanobacteria.–Plant Cell Physiol. 36: 873–882, 1995a.CrossRefGoogle Scholar
  58. Schreiber U., Hormann H., Neubauer C., Klughammer C.: Assessment of Photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis.–Aust. J. Plant Physiol. 22: 209–220, 1995b.CrossRefGoogle Scholar
  59. Schreiber, U., Krieger A.: Two fundamentally different types of variable chlorophyll fluorescence in vivo.–FEBS Lett. 397: 131–135, 1996.CrossRefPubMedGoogle Scholar
  60. Schreiber U., Neubauer C.: The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. partial control by the photosystem II donor side and possible ways of interpretation.–Z. Naturforsch. C 42: 1255–1264, 1987.CrossRefGoogle Scholar
  61. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.–Photosynth Res 10: 51–62, 1986.CrossRefPubMedGoogle Scholar
  62. Smith T.A., Kohorn B.D.: Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors.–J. Cell Biol. 126: 365–374, 1994.CrossRefPubMedGoogle Scholar
  63. Staehelin A.: Chloroplasts structure and supramolecular organization of photosynthetic membranes.–In: Staehelin L.A., Arntzen C.A. (ed.): Photosynthesis III: Photosynthetic Membranes and Light Harvesting Systems. Pp. 1–84. Springer-Verlag, New York 1986.CrossRefGoogle Scholar
  64. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.–Photosynth. Res. 113: 15–61, 2012.CrossRefPubMedGoogle Scholar
  65. Stys D.: Stacking and separation of Photosystem-I and Photosystem-II in plant thylakoid membranes–a physicochemical view.–Physiol. Plantarum 95: 651–657, 1995.CrossRefGoogle Scholar
  66. Sueoka N.: Miotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii.–P. Natl. Acad. Sci. USA 46: 83–88, 1960.CrossRefGoogle Scholar
  67. Suggett D.J., Oxborough K., Baker N.R. et al.: Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton.–Eur. J. Phycol. 38: 371–384, 2003.CrossRefGoogle Scholar
  68. Suggett D.J., Prášil O., Borowitzka M.A. (ed.): Chlorophyll a Fluorescence in Aquatic Sciences. Methods and Applications. Pp. 334. Springer, Dordrecht–Heidelberg–London–New York 2010.CrossRefGoogle Scholar
  69. Sukenik A., Bennett J., Falkowski P.: Light-saturated photosynthesis - limitation by electron transport or carbon fixation.–BBA-Bioenergetics 891: 205–215, 1987.CrossRefGoogle Scholar
  70. Taoka S., Crofts A.R.: Two-electron gate in triazine resistant and susceptible Amaranthus hybridus.–In: Baltscheffsky M. (ed.): 8th International Congress on Photosynthesis. Pp. A547–A550. Kluwer, Dordrecht 1990.Google Scholar
  71. Trebst A.: The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane.–Z. Naturforsch. C 41: 240–245, 1986.CrossRefGoogle Scholar
  72. Valkunas L., Geacintov N.E., France L., Breton J.: The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses.–Biophys. J. 59: 397–408, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vernotte C., Etienne A.L., Briantais J.-M.: Quenching of the Photosystem II chlorophyll fluorescence by the plastoquinone pool.–Biochim. Biophys. Acta 545: 519–527, 1979.CrossRefPubMedGoogle Scholar
  74. Vredenberg W., Durchan M., Prášil O.: On the chlorophyll a fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains.–Photosynth. Res. 93: 183–192, 2007.CrossRefPubMedGoogle Scholar
  75. Vredenberg W., Durchan M., Prášil O.: Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II.–BBA-Bioenergetics 1787: 1468–1478, 2009.CrossRefPubMedGoogle Scholar
  76. Vredenberg W., Durchan M., Prášil O.: The analysis of PS II photochemical activity using single and multi-turnover excitations.–J. Photoch. Photobio. B 107: 45–54, 2012.CrossRefGoogle Scholar
  77. Vredenberg W., Kasalicky V., Durchan M., Prášil O.: The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of QB-nonreducing centers.–Biochim. Biophys. Acta 1757: 173–181, 2006.CrossRefPubMedGoogle Scholar
  78. Vredenberg W., Prášil O.: Modeling of chlorophyll a fluorescence kinetics in plant cells: derivation of a descriptive algorithm.–In: Laisk A., Nedbal L., {ieGovindjee (ed.): Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Pp. 125–146. Springer, Dordrecht 2009.CrossRefGoogle Scholar
  79. Vredenberg W., Prášil O.: On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length.–Photosynth. Res. 117: 321–337, 2013.CrossRefPubMedGoogle Scholar
  80. Whitmarsh J., Ort D.R.: Stoichiometries of electron transport complexes in spinach chloroplasts.–Arch. Biochem. Biophys. 231: 378–389, 1984.CrossRefPubMedGoogle Scholar
  81. Yaakoubd B., Andersen R., Desjardins Y., Samson G.: Contributions of the free oxidized and Q(B)-bound plastoquinone molecules to the thermal phase of chlorophyllalpha fluorescence.–Photosynth. Res. 74: 251–257, 2002.CrossRefPubMedGoogle Scholar
  82. Zankel K.L.: Rapid fluorescence changes observed in chloroplasts: their relationship to the O2 evolving system.–Biochim. Biophys. Acta 325: 138–148, 1973.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Institute of Microbiology CASCenter AlgatechTřeboňCzech Republic
  2. 2.Soliense Inc.ShorehamUSA
  3. 3.Environmental Biophysics and Molecular Ecology Program, Departments of Marine and Coastal Science, and Earth and Planetary ScienceRutgers UniversityNew BrunswickUSA

Personalised recommendations