, Volume 56, Issue 3, pp 953–961 | Cite as

Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors

  • H. M. Kalaji
  • A. Rastogi
  • M. Živčák
  • M. Brestic
  • A. Daszkowska-Golec
  • K. Sitko
  • K. Y. Alsharafa
  • R. Lotfi
  • P. Stypiński
  • I. A. Samborska
  • M. D. Cetner
Open Access


The study examined photosynthetic efficiency of two barley landraces (cvs. Arabi Abiad and Arabi Aswad) through a prompt fluorescence technique under influence of 14 different abiotic stress factors. The difference in the behavior of photosynthetic parameters under the same stress factor in–between cv. Arabi Abiad and cv. Arabi Aswad indicated different mechanisms of tolerance and strategies for the conversion of light energy into chemical energy for both the landraces. This study confirmed the suitability of some chlorophyll fluorescence parameters as reliable biomarkers for screening the plants at the level of photosynthetic apparatus.


chlorophyll a fluorescence JIP test photosystem II 





absorption flux per one active reaction center


total complimentary area between the fluorescence induction curve




cross section


days of treatment


electron transport chain


electron transport


fluorescence at time 0


fluorescence at time t


ratio of photochemical to nonphotochemical quantum efficiencies


high photosynthetic active radiation


high temperature


low photosynthetic active radiation


low temperature


performance index on absorbance basis


reaction center


trapped energy flux


probability of an electron to reach the electron transport chain outside QA-.


  1. Bolhàr-Nordenkampf H.R., Öquist G.: Chlorophyll fluorescence as a tool in photosynthesis research.–In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H. R. et al. (ed.): Photosynthesis and production in a changing environment: a field and laboratory manual. Pp. 193–206. Chapman & Hall, London 1993.Google Scholar
  2. Brestic M., Živčák M., Kalaji H.M. et al.: Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L.–Plant Physiol Bioch. 57: 93–105, 2012.CrossRefGoogle Scholar
  3. Cascio C., Schaub M., Novak K. et al.: Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions.–Environ. Exp. Bot. 68: 188–197, 2010.CrossRefGoogle Scholar
  4. Dai Y., Shen Z., Liu Y. et al.: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg.–Environ. Exp. Bot. 65: 177–182, 2009.CrossRefGoogle Scholar
  5. Dayan F.E., Zaccaro M.L.M.: Chlorophyll fluorescence as a marker for herbicide mechanisms of action.–Pestic. Biochem. Phys. 102: 189–197, 2012.CrossRefGoogle Scholar
  6. Desotgiu R., Bussotti F., Faoro F. et al.: Early events in Populus hybrid and Fagus sylvatica leaves exposed to ozone.–Sci. World J. 10: 512–527, 2010.CrossRefGoogle Scholar
  7. Devi S.R., Prasad M.N.V.: Influence of ferulic acid on photo synthesis of maize: analysis of CO2 assimilation, electron transport activities, fluorescence emission and photophosphorylation.–Photosynthetica 32: 117–127, 1996.Google Scholar
  8. Fracheboud Y., Leipner J.: The application of chlorophyll fluorescence to study light, temperature, and drought stress.–In: De-Ell J.R., Toivonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125-150, Kluwer Acad. Publ. Dordrecht 2003.Google Scholar
  9. Gürel F., Öztürk Z. N., Uçarli C., Rosellini D.: Barley genes as tools to confer abiotic stress tolerance in crops.–Front. Plant Sci. 7: 1137, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants Without Soil, California. California Agricultural Experiment Station, Circular 347. Pp. 1-32. Univ. of California, Berkeley 1950.Google Scholar
  11. Horváth G., Droppa M., Oravecz A. et al.: Formation of the photosynthetic apparatus during greening of cadmiumpoisoned barley leaves.–Planta 199: 238–243, 1996.CrossRefGoogle Scholar
  12. Kalaji H.M., Bosa K., Kościelniak J., Hossain Z.: Chlorophyll a fluorescence–A useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.).–OMICS 15: 925–934, 2011a.CrossRefPubMedGoogle Scholar
  13. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley.–J. Photoch. Photobio. B 112: 1–6, 2012.CrossRefGoogle Scholar
  14. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces.–Environ. Exp. Bot. 73: 64–72, 2011b.CrossRefGoogle Scholar
  15. Kalaji H.M., Guo P.: Chlorophyll fluorescence: a useful tool in barley plant breeding programs.–In: Sánchez A., Gutiérrez S.J. (ed.): Photochemistry Research Progress. Pp. 439-463. Nova Sci. Publ. Inc., New York 2008.Google Scholar
  16. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.–Acta Physiol. Plant. 38: 102, 2016.CrossRefGoogle Scholar
  17. Kalaji H.M., Łoboda T.: Photosystem II of barley seedlings under cadmium and lead stress.–Plant Soil Environ. 53: 511–516, 2007.CrossRefGoogle Scholar
  18. Kalaji H.M., Pietkiewicz S.: Some physiological indices to be exploited as a crucial tool in plant breeding.–Plant Breed. Seeds Sci. 49: 19–39, 2004.Google Scholar
  19. Kang Y., Khan S., Ma X.: Climate change impacts on crop yield, crop water productivity and food security–A review.–Prog. Nat. Sci. 19: 1665–1674, 2009.CrossRefGoogle Scholar
  20. Kaur B., Kaur G., Asthir B.: Biochemical aspects of nitrogen use efficiency: An overview.–J. Plant Nutr. 40: 506–523, 2017.CrossRefGoogle Scholar
  21. Kautsky H., Hirsch A.: [New attempts to assimilate carbonic acid.]–Naturwissenschaften 19: 96, 1931. [In German]Google Scholar
  22. Krupa Z., Baszynski T.: Some aspects of heavy metals toxicity towards photosynthetic apparatus–direct and indirect effects on light and dark reactions: a review.–Acta Physiol. Plant. 17: 177–190, 1995.Google Scholar
  23. Kuckenberg J., Tartachnyk I., Noga G.: Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves.–Precis. Agric. 10: 34–44, 2009.CrossRefGoogle Scholar
  24. Lootens P., Ruttink T., Rohde A. et al.: High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis.–Plant Methods 12: 32, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mathur S., Jajoo A., Mehta P., Bharti S.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).–Plant Biol. 13: 1–6, 2011.CrossRefPubMedGoogle Scholar
  26. Mathur S., Kalaji H.M., Jajoo A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant.–Photosynthetica 54: 185–192, 2016.CrossRefGoogle Scholar
  27. Maxwell K., Johnson N.G.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  28. Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves.–Plant Physiol. Bioch. 48: 16–20, 2010.CrossRefGoogle Scholar
  29. Merz D., Geyer M., Moss D.A., Ache H.-J.: Chlorophyll fluorescence biosensor for the detection of herbicides.–Fresen J. Anal. Chem. 354: 299–305, 1996.Google Scholar
  30. Morales F., Abadía A., Abadía J.: Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves.–Plant Physiol. 97: 886–893, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.–J. Exp. Bot. 64: 3983–3998, 2013.CrossRefPubMedGoogle Scholar
  32. Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering.–Environ. Exp. Bot. 60: 438–446, 2007.CrossRefGoogle Scholar
  33. Roschina V., Melnikowa E.V.: Microspectrofluorometry: a new technique to study pollen allelopathy.–Allelopathy J. 3: 51–58, 1996.Google Scholar
  34. Santelia D., Lawson T.: Rethinking guard cell metabolism.–Plant Physiol. 172: 1371–1392, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.–In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer, Berlin 1994.Google Scholar
  36. Sharma P., Dubey R.: Lead toxicity in plants.–Braz. J. Plant Physiol. 17: 35–52, 2005.CrossRefGoogle Scholar
  37. Siedlecka A., Krupa Z., Samuelsson G. et al.: Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction.–Plant Physiol. Bioch. 35: 951–957 1997.Google Scholar
  38. Spiller S., Terry N.: Limiting factors in photosynthesis: II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units.–Plant Physiol. 65: 121–125, 1980.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Srivastava A., Guisse B., Greppin H., Strasser R.J.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP.–BBA-Bioenergetics 1320: 95–106, 1997.CrossRefGoogle Scholar
  40. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescent transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pathre, U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.Google Scholar
  41. Strasser R.J., Tsimilli-Michael M., Dangre D., Rai M.: Biophysical phenomics reveals functional building blocks of plants system biology: acase study for evaluation of the impast of Mycorrhization with Piriformospora indica.–In: Varma A., Oelmüller R. (ed.): Advanced Techniques in Soil Biology. Pp. 319-338. Springer, Berlin 2004.Google Scholar
  42. Surpin M., Larkin R.M., Chory J.: Signal transduction between the chloroplast and the nucleus.–Plant Cell 14S: S327–S338, 2002.CrossRefGoogle Scholar
  43. Terry N., Huston R.P.: Effects of calcium on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets.–Plant Physiol. 55: 923–927, 1975.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Terry N.: Effects of sulfur on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets.–Plant Physiol. 57: 477–479, 1976.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tiwari A., Jajoo A., Bharti S.: Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes.–Photoch. Photobio. Sci. 7: 485–491, 2008.CrossRefGoogle Scholar
  46. Tomar R.S., Jajoo A.: Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).–Ecotoxicol. Environ. Safe. 109: 110–115, 2014.CrossRefGoogle Scholar
  47. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plant’s vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants.–In: Varma A. (ed.): Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics (3rd edition). Pp. 679–703. Springer, Berlin–Heidelberg 2008.Google Scholar
  48. Walter A., Liebisch F., Hund A.: Plant phenotyping: from bean weighing to image analysis.–Plant Methods 11: 14, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Živčák M., Brestic M., Kunderlikova K. et al.: Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise?–J. Photoch. Photobio. B 152: 318–324, 2015.CrossRefGoogle Scholar
  50. Živčák M., Breštič M., Olšovska K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L.–Plant Soil Environ. 54: 133–139, 2008.Google Scholar
  51. Živčák M., Olšovská K., Slamka P. et al.: Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency.–Plant Soil Environ. 60: 210–215, 2014.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • H. M. Kalaji
    • 1
    • 2
  • A. Rastogi
    • 3
    • 4
  • M. Živčák
    • 4
  • M. Brestic
    • 4
  • A. Daszkowska-Golec
    • 5
  • K. Sitko
    • 6
  • K. Y. Alsharafa
    • 7
  • R. Lotfi
    • 8
  • P. Stypiński
    • 9
  • I. A. Samborska
    • 10
  • M. D. Cetner
    • 10
  1. 1.Institute of Technology and Life Sciences (ITP)RaszynPoland
  2. 2.White Hill CompanyBiałystokPoland
  3. 3.Department of MeteorologyPoznan University of Life SciencesPoznanPoland
  4. 4.Department of Plant PhysiologySlovak University of AgricultureNitraSlovak Republic
  5. 5.Department of Genetics, Faculty of Biology and Environmental ProtectionUniversity of SilesiaKatowicePoland
  6. 6.Department of Plant Physiology, Faculty of Biology and Environmental ProtectionUniversity of SilesiaKatowicePoland
  7. 7.Department of Biological Science, Faculty of ScienceMutah UniversityMutahJordan
  8. 8.Dryland Agricultural Research Institute, Agricultural Research Education & Extension OrganizationMaraghehIran
  9. 9.Department of AgronomyWarsaw University of Life SciencesWarsawPoland
  10. 10.Department of Plant Physiology, Faculty of Agriculture and BiologyWarsaw University of Life Science – SGGWWarsawPoland

Personalised recommendations