Evaluating the link between photosynthetic capacity and leaf vascular organization with principal component analysis
- 19 Downloads
- 1 Citations
Abstract
Significant linear relationships between photosynthetic capacity and principal components loaded by phloem cell numbers and tracheary elements per minor vein as well as the latter two normalized for vein density (proxy for apoplastic phloem loading capacity involving membrane transporters) were revealed for all apoplastic loaders (summer annuals and winter annual Arabidopsis thaliana). In addition, significant linear relationships between photosynthetic capacity and a principal component loaded by tracheary element cross-sectional areas and volumes per unit of leaf area (water flux capacity proxy) was present for symplastic and apoplastic loaders. Lastly, a significant linear relationship between photosynthetic capacity and a principal component loaded by phloem cell cross-sectional areas and volumes per unit of leaf area (proxy for symplastic loading capacity involving cytosolic enzymes for companion cells) was revealed for summer annual symplastic loaders as well as for A. thaliana (in the case of sieve elements, a proxy for sugar export capacity from the leaves).
Additional key words
growth temperature high light low light phloem parenchyma cells xylemAbbreviations
- CC
companion cell
- LC
loading cell (i.e., CC and PPC)
- PC
principal component
- PCA
principal component analysis
- PPC
phloem parenchyma cell
- SA
summer annual
- SE
sieve element
- TE
tracheary element
- VD
vein density
Preview
Unable to display preview. Download preview PDF.
References
- Abdi H., Williams L.J.: Principal component analysis.–WIRESComput. Stat. 2: 433–459, 2010.Google Scholar
- Adams W.W. III, Amiard V.S.E., Mueh K.E. et al.: Phloem loading type and photosynthetic acclimation to light.–In: van der Est A., Bruce D. (ed.): Photosynthesis: Fundamental Aspects to Global Perspectives. Pp. 814–816. Allen Press, Lawrence 2005.Google Scholar
- Adams W.W. III, Cohu C.M., Amiard V., Demmig-Adams B.: Associations between phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate.–Front. Plant Sci. 5: 24, 2014.Google Scholar
- Adams W.W. III, Muller O., Cohu C.M., Demmig-Adams B.: Foliar phloem infrastructure in support of photosynthesis.–Front. Plant Sci. 4: 194, 2013.PubMedPubMedCentralGoogle Scholar
- Adams W.W. III, Stewart J.J., Cohu C.M. et al.: Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature.–Front. Plant Sci. 7: 1026, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
- Adams W.W. III, Watson A.M., Mueh K.E. et al.: Photosynthetic acclimation in the context of structural constraints to carbon export from leaves.–Photosynth. Res. 94: 455–466, 2007CrossRefPubMedGoogle Scholar
- Ågren J., Schemske D.W.: Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range.–New Phytol. 194: 1112–1122, 2012.CrossRefPubMedGoogle Scholar
- Amiard V., Mueh K.E., Demmig-Adams B. et al.: Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development.–New Phytol. 173: 722–731, 2007.CrossRefPubMedGoogle Scholar
- Amiard V., Mueh K.E., Demmig-Adams B. et al: Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading.–P. Natl. Acad. Sci. USA 102: 12968–12973, 2005.CrossRefGoogle Scholar
- Beerling D.J., Franks P.J: The hidden cost of transpiration.–Nature 464: 495–496, 2010.CrossRefPubMedGoogle Scholar
- Beikircher B., Mittmann C., Mayr S.: Prolonged soil frost affects hydraulics and phenology of apple trees.–Front. Plant Sci. 7: 867, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
- Blonder B., Violle C., Bentley L.P., Enquist B.J.: Venation networks and the origin of the leaf economics spectrum.–Ecol. Lett. 14: 91–100, 2011.CrossRefPubMedGoogle Scholar
- Bond B.J., Kavanagh K.L.: Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential.–Tree Physiol. 19: 503–510, 1999.CrossRefPubMedGoogle Scholar
- Boyce C.K., Brodribb T.J., Feild T.S., Zwieniecki M.A.: Angiosperm leaf vein evolution was physiologically and environmentally transformative.–Philos. T. Roy. Soc. B-Biol. Sci. 276: 1771–1776, 2009.CrossRefGoogle Scholar
- Brodribb T.J., Feild T.S., Jordan G.J.: Leaf maximum photosynthetic rate and venation are linked by hydraulics.–Plant Physiol. 144: 1890–1898, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
- Brodribb T.J., Feild T.S., Sack L.: Viewing leaf structure and evolution from a hydraulic perspective.–Funct. Plant Biol. 37: 488–498, 2010.CrossRefGoogle Scholar
- Brodribb T.J., Feild T.S.: Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification.–Ecol. Lett. 13: 175–183, 2010.CrossRefPubMedGoogle Scholar
- Brodribb T.J., Holbrook N.M., Zwieniecki M.A., Palma B.: Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima.–New Phytol. 165: 839–846, 2005.CrossRefPubMedGoogle Scholar
- Brodribb T.J., Jordan G.J.: Internal coordination between hydraulics and stomatal control in leaves.–Plant Cell Environ. 31: 1557–1564, 2008.CrossRefPubMedGoogle Scholar
- Brodribb T.J.: Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity.–Plant Sci. 177: 245–251, 2009.CrossRefGoogle Scholar
- Cavender-Bares J., Cortes P., Rambal S. et al.: Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.–New Phytol. 168: 597–612, 2005.CrossRefPubMedGoogle Scholar
- Cohu C.M., Muller O., Adams W.W. III, Demmig-Adams B.: Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus summer annuals.–Physiol. Plantarum 152: 164–173, 2014.CrossRefGoogle Scholar
- Cohu C.M., Muller O., Demmig-Adams B., Adams W.W. III: Minor loading vein acclimation for three Arabidopsis thaliana ecotypes in response to growth under different temperature and light regimes.–Front. Plant Sci. 4: 240, 2013b.PubMedPubMedCentralGoogle Scholar
- Cohu C.M., Muller O., Stewart J.J. et al: Association between minor loading vein architecture and light- and CO2-saturated oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes.–Front. Plant Sci. 4: 264, 2013a.PubMedPubMedCentralGoogle Scholar
- Davis S.D., Sperry J.S., Hacke U.G.: The relationship between xylem conduit diameter and cavitation caused by freezing.–Am. J. Bot. 86: 1367–1372, 1999.CrossRefPubMedGoogle Scholar
- Delieu T., Walker D.A.: Polarographic measurements of photosynthetic oxygen evolution by leaf discs.–New Phytol. 89: 165–178, 1981.CrossRefGoogle Scholar
- Demmig-Adams B., Stewart J.J., Adams W.W. III: Environmental regulation of intrinsic photosynthetic capacity: an integrated view.–Curr. Opin. Plant Biol. 37: 34–41, 2017.CrossRefPubMedGoogle Scholar
- Demmig-Adams B., Stewart J.J., Adams W.W. III: Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment.–Philos. T. Roy. Soc. B 369: 20130244, 2014.CrossRefGoogle Scholar
- Dumlao M.R., Darehshouri A., Cohu C.M. et al.: Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type.–Photosynth. Res. 113: 181–189, 2012.CrossRefPubMedGoogle Scholar
- Evans J.R., Kaldenhoff R., Genty B., Terashima I.: Resistances along the CO2 diffusion pathway inside leaves.–J. Exp. Bot. 60: 2235–2248, 2009.CrossRefPubMedGoogle Scholar
- Fedriani J.M., Garrote P.J., Delgado M.d.M., Penteriani V.: Subtle gardeners: inland predators enrich local topsoils and enhance plant growth.–PLoS ONE 10: e0138273, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
- Fondy B.R., Geiger D.R.: Sugar selectivity and other characteristics of phloem loading in Beta vulgaris L.–Plant Physiol. 59: 953–960, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
- Franks P.J.: Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients.–Plant Cell Environ. 29: 584–592, 2006CrossRefPubMedGoogle Scholar
- Geiger D.: Plant sucrose transporters from a biophysical point of view.–Mol. Plant. 4: 395–406, 2011.CrossRefPubMedGoogle Scholar
- Giaquinta R.T.: Phloem loading of sucrose.–Annu. Rev. Plant Physio. 34: 347–387, 1983.CrossRefGoogle Scholar
- Gifford R.M., Evans L.T.: Photosynthesis, carbon partitioning, and yield.–Ann. Rev. Plant Physiol. 32: 485–509, 1981.CrossRefGoogle Scholar
- Gifford R.M., Thorne J.H., Hitz W.D., Gianquinta R.T.: Crop productivity and photoassimilate partitioning.–Science 225: 801–808, 1984.CrossRefPubMedGoogle Scholar
- Gorsuch P.A., Pandey S., Atkin O.K.: Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves.–Plant Cell Environ. 33: 244–258, 2010.CrossRefPubMedGoogle Scholar
- Hacke U.G., Sperry J.S.: Functional and ecological xylem anatomy.–Perspect. Plant Ecol. 4: 97–115, 2001.CrossRefGoogle Scholar
- Hubbard R.M., Ryan M.G., Stiller V., Sperry J.S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine.–Plant Cell Environ. 24: 113–121, 2001.CrossRefGoogle Scholar
- Jumrani K., Bhatia V.S., Pandey G.P.: Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.–Photosynth. Res. 131: 333–350, 2017.CrossRefPubMedGoogle Scholar
- Klepek Y.S., Geiger D., Stadler R. et al.: Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-symport of numerous substrates, including myo-inositol, glycerol, and ribosele.–Plant Cell 17: 204–218, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
- Koornneef M., Meinke D.: The development of Arabidopsis as a model plant.–Plant J. 61: 909–921, 2010.CrossRefPubMedGoogle Scholar
- Kundu S.K, Tigerstedt P.M.A.: Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica).–Tree Physiol. 19: 47–52, 1999.CrossRefPubMedGoogle Scholar
- Langan S.J., Ewers F.W., Davis S.D.: Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs.–Plant Cell Environ. 20: 425–437, 1997.CrossRefGoogle Scholar
- Liesche J., Schulz A.: Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders.–Front. Plant Sci. 4: 207, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
- Maherali H., Sherrard M.E., Clifford M.H., Latta R.G.: Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass.–New Phytol. 180: 240–247, 2008.CrossRefPubMedGoogle Scholar
- McKown A.D., Cochard H., Sack L.: Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution.–Am. Nat. 175: 447–460, 2010.CrossRefPubMedGoogle Scholar
- Muller O., Cohu C.M., Stewart J.J. et al: Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes.–Physiol. Plantarum 152: 174–183, 2014a.CrossRefGoogle Scholar
- Muller O., Stewart J.J., Cohu C.M. et al: Leaf architectural, vascular, and photosynthetic acclimation to temperature in two biennials.–Physiol. Plantarum 152: 763–772, 2014b.CrossRefGoogle Scholar
- Nardini A., Gortan E., Salleo S.: Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species.–Funct. Plant Biol. 32: 953–961, 2005.CrossRefGoogle Scholar
- Oguchi R., Hikosaka K., Hirose T.: Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous species.–Plant Cell Environ. 28: 916–927, 2005.CrossRefGoogle Scholar
- Oguchi R., Hikosaka K., Hiura T., Hirose T.: Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation.–Oecologia 155: 665–675, 2008.CrossRefPubMedGoogle Scholar
- Oguchi R., Hikosaka K., Hiura T., Hirose T.: Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest.–Oecologia 149: 571–582, 2006.CrossRefPubMedGoogle Scholar
- Prado K., Maurel C.: Regulation of leaf hydraulics: from molecular to whole plant levels.–Front. Plant Sci. 4: 255, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
- Pratt R.B., Jacobsen A.L.: Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics.–Plant Cell Environ. 40: 897–913, 2017.CrossRefPubMedGoogle Scholar
- Provart N.J., Alonso J., Assmann S.M. et al.: 50 years of Arabidopsis research: highlights and future directions.–New Phytol. 209: 921–944, 2016.CrossRefPubMedGoogle Scholar
- Ramsperger-Gleixner M., Geiger D., Hedrich R., Sauer N.: Differential expression of sucrose transporter and polyol transporter genes during maturation of common plantain companion cells.–Plant Physiol. 134: 147–160, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
- Rennie E.A., Turgeon R.: A comprehensive picture of phloem loading strategies.–P. Natl. Acad. Sci. USA 106: 14162–14167, 2009.CrossRefGoogle Scholar
- Repo T., Kalliokoski T., Domisch T. et al: Effects of timing of soil frost thawing on Scots pine.–Tree Physiol. 25: 1053–1062, 2005.CrossRefPubMedGoogle Scholar
- Repo T., Lehto T., Finér L.: Delayed soil thawing affects root and shoot functioning and growth in Scots pine.–Tree Physiol. 28: 1583–1591, 2008.CrossRefPubMedGoogle Scholar
- Sack L., Holbrook N.M.: Leaf hydraulics.–Annu. Rev. Plant Biol. 57: 361–381, 2006.CrossRefPubMedGoogle Scholar
- Sack L., Scoffoni C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.–New Phytol. 198: 983–1000, 2013.CrossRefPubMedGoogle Scholar
- Santiago L.S., Goldstein G., Meinzer F.C. et al.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.–Oecologia 140: 543–550, 2004.CrossRefPubMedGoogle Scholar
- Schulz A.: Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates.–J. Plant Res. 128: 49–61, 2015.CrossRefPubMedGoogle Scholar
- Slewinski T.L., Zhang C., Turgeon R.: Structural and functional heterogeneity in phloem loading and transport.–Front. Plant Sci. 4: 244, 2013.PubMedPubMedCentralGoogle Scholar
- Sperry J.S., Hacke U.G., Pitterman J.: Size and function in conifer tracheids and angiosperm vessels.–Am. J. Bot. 93: 1490–1500, 2006.CrossRefPubMedGoogle Scholar
- Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy.–J. Ultrastruct. Res. 26: 31–43, 1969.CrossRefPubMedGoogle Scholar
- Stewart J.J., Adams W.W. III, Cohu C.M. et al.: Differences in light-harvesting, acclimation to growth-light environment, and leaf structural development between Swedish and Italian ecotypes of Arabidopsis thaliana.–Planta 242: 1277–1290, 20CrossRefPubMedGoogle Scholar
- Stewart J.J., Demmig-Adams B., Cohu C.M. et al.: Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe.–Plant Cell Environ. 39: 1549–1558, 2016.CrossRefPubMedGoogle Scholar
- Stewart J.J., Polutchko S.K., Adams W.W. III et al.: Light, temperature, and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana.–Physiol. Plantarum 160: 98–110, 20CrossRefGoogle Scholar
- Stewart J.J., Polutchko S.K., Adams W.W. III, Demmig-Adams B.: Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.–Photosynth. Res.: DOI:10.1007/s11120-017-0436-1, in press, 2017.Google Scholar
- Strand Å., Hurry V., Gustafsson P., Gardeström P.: Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates.–Plant J. 12: 605–614, 1997.CrossRefPubMedGoogle Scholar
- Strand Å., Hurry V., Henkes S. et al.: Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the source-biosynthesis pathway.–Plant Physiol. 119: 1387–1397, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
- Tanaka Y., Sugano S.S., Shimada T., Hara-Nishimura I.: Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.–New Phytol. 198: 757–764, 2013.CrossRefPubMedGoogle Scholar
- Taylor S.H., Franks P.J., Hulme S.P. et al.: Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses.–New Phytol. 193: 387–396, 2012.CrossRefPubMedGoogle Scholar
- Terashima I. Hanba Y.T., Tholen D., Niinemets ü.: Leaf functional anatomy in relation to photosynthesis.–Plant Physiol. 155: 108–116, 2011.CrossRefPubMedGoogle Scholar
- Terashima I., Hanba Y.T., Tazoe Y. et al.: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.–J. Exp. Bot. 57: 343–354, 2006.CrossRefPubMedGoogle Scholar
- Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf.–J. Plant Res. 114: 93–105, 2001.CrossRefGoogle Scholar
- Walls R.L.: Angiosperm leaf vein patterns are linked to leaf functions in global-scale data set.–Am. J. Bot. 98: 244–253, 2011.CrossRefPubMedGoogle Scholar
- Wang J., Lu W., Tong Y.X., Yang Q.C.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light.–Front. Plant Sci. 7: 250, 2016.PubMedPubMedCentralGoogle Scholar
- Wardlaw I.F.: The control of carbon partitioning in plants.–New Phytol. 116: 341–381, 1990.CrossRefGoogle Scholar
- Wu B.-J., Chow W.S., Liu Y.-J. et al.: Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicas Thunb.–Plant Sci. 229: 23–31, 2014.CrossRefPubMedGoogle Scholar
- Zhu S.-D., Song J.-J., Li R.-H., Ye Q.: Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests.–Plant Cell Environ. 36: 879–891, 2013.CrossRefPubMedGoogle Scholar
- Zimmerman M.H.: Xylem Structure and the Ascent of Sap. Pp. 143. Springer, Berlin 1983.CrossRefGoogle Scholar
- Zweifel R., Steppe K., Sterck F.J.: Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.–J. Exp. Bot. 58: 2113–2131, 2007.CrossRefPubMedGoogle Scholar