, Volume 56, Issue 1, pp 48–61 | Cite as

RNA editing of plastid-encoded genes



RNA editing is post-transcriptional modification to RNA molecules. In plants, RNA editing primarily occurs to two energy-producing organelles: plastids and mitochondria. Organelle RNA editing is often viewed as a mechanism of correction to compensate for defects or mutations in haploid organelle genomes. A common type of organelle RNA editing is deamination from cytidine to uridine. Cytidine-to-uridine plastid RNA editing is carried out by the RNA editing complex which consists of at least four types of proteins: pentatricopeptide repeat proteins, RNA editing interacting proteins/multiple organellar RNA editing factors, organelle RNA recognition motif proteins, and organelle zinc-finger proteins. The four types of RNA editing factors work together to carry out RNA editing site recognition, zinc cofactor binding, and cytidine-to-uridine deamination. In addition, three other types of proteins have been found to be important for plastid RNA editing. These additional proteins may play a regulatory or stabilizing role in the RNA editing complex.

Additional key words

Arabidopsis thaliana cytidine deaminase trans factor 



apolipoprotein B mRNA editing enzyme catalytic polypeptide-like


cytidine deaminase


chloroplast biogenesis


31 kD chloroplast protein A


31 kD chloroplast protein B


chlororespiratory reduction




aspartate, tyrosine, and tryptophan domain


extension domain


early chloroplast biogenesis


long motif


low PSII accumulation


multiple organellar RNA editing factor


overexpressor of cationic peroxidase


organelle RNA recognition motif


organelle transcript processing


organelle zinc-finger




protoporphyrinogen oxidase


pentatricopeptide repeat


quintuple editing factor




required for accD RNA editing


RNA editing interacting protein


RNA recognition motif


short motif


PPR-small MutS-related


thylakoid assembly




vanilla cream


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barkan A., Small I.: Pentatricopeptide repeat proteins in plants. - Annu. Rev. Plant Biol. 65: 415–442, 2014.CrossRefPubMedGoogle Scholar
  2. Bentolila S., Heller W.P., Sun T. et al.: RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing.–P. Natl. Acad. Sci. USA 109: E1453–E1461, 2012.CrossRefGoogle Scholar
  3. Bentolila S., Oh J., Hanson M.R. et al.: Comprehensive highresolution analysis of the role of an Arabidopsis gene family in RNA editing.–PLoS Genet. 9: e1003584, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Betts L., Xiang S., Short S.A. et al.: Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex.–J. Mol. Biol. 235: 635–656, 1994.CrossRefPubMedGoogle Scholar
  5. Blokhina O., Fagerstedt K.V.: Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.–Physiol. Plantarum 138: 447–462, 2010.CrossRefGoogle Scholar
  6. Blow M.J., Grocock R.J., van Dongen S. et al.: RNA editing of human microRNAs.–Genome Biol. 7: R27, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boussardon C., Salone V., Avon A. et al.: Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids.–Plant Cell 24: 3684–3694, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boussardon C., Avon A., Kindgren P. et al.: The cytidine deaminase signature HxE(x)n CxxC of DYW1 binds zinc and is necessary for RNA editing of ndhD-1.–New Phytol. 203: 1090–1095, 2014.CrossRefPubMedGoogle Scholar
  9. Brennicke A., Marchfelder A., Binder S.: RNA editing.–FEMS Microbiol. Rev. 23: 297–316, 1999.CrossRefPubMedGoogle Scholar
  10. Cai W., Ji D., Peng L. et al.: LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis.–Plant Physiol. 150: 1260–1271, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cao Z.-L., Yu Q.-B., Sun Y. et al: A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development.–J. Integr. Plant Biol. 53: 258–269, 2011.CrossRefPubMedGoogle Scholar
  12. Chateigner-Boutin A.-L., Small I.: A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons.–Nucleic Acids Res. 35: e114, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chateigner-Boutin A.L., Ramos-Vega M., Guevara-García A. et al.: CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts.–Plant J. 56: 590–602, 2008.CrossRefPubMedGoogle Scholar
  14. Chen M., Herde M., Witte C.P.: Of the nine cytidine deaminaselike genes in Arabidopsis, eight are pseudogenes and only one is required to maintain pyrimidine homeostasis in vivo.–Plant Physiol. 171: 799–809, 2016.PubMedPubMedCentralGoogle Scholar
  15. Chung S.J., Fromme J.C., Verdine G.L.: Structure of human cytidine deaminase bound to a potent inhibitor.–J. Med. Chem. 48: 658–660, 2005.Google Scholar
  16. Coego A., Ramirez V., Gil M.J. et al.: An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens.–Plant Cell 17: 2123–2137, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Covello P.S., Gray M.W.: On the evolution of RNA editing. - Trends Genet. 9: 265–268, 1993.CrossRefPubMedGoogle Scholar
  18. Cui Y., Huang T., Zhang X.: RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA. - Open Biol. 5: 150126, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Delannoy E., Le Ret M., Faivre-Nitschke E. et al.: Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg(ACG) and is essential for efficient chloroplast translation.–Plant Cell 21: 2058–2071, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Faivre-Nitschke S.E., Grienenberger J.M., Gualberto J.M.: A prokaryotic-type cytidine deaminase from Arabidopsis thaliana gene expression and functional characterization.–Eur. J. Biochem. 263: 896–903, 1999.CrossRefPubMedGoogle Scholar
  21. Fey J., Weil J.H., Tomita K. et al.: Role of editing in plant mitochondrial transfer RNAs.–Gene 286: 21–24, 2002.CrossRefPubMedGoogle Scholar
  22. Foyer C.H., Harbinson J.: Oxygen metabolism and the regulation of photosynthetic electron transport.–In: Foyer C.H., Mullineaux P. (ed.): Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Pp. 1–42. CRC Press, Boca Raton 1994.Google Scholar
  23. Foyer C.H.: Oxygen metabolism and electron transport in photosynthesis.–In: Scandalios J. (ed.): Molecular Biology of Free Radical Scavenging Systems. Pp. 587–621. Cold Spring Harbor Laboratory Press, New York 1997.Google Scholar
  24. García-Andrade J., Ramírez V., López A. et al.: Mediated plastid RNA editing in plant immunity.–PLOoS Pathog. 9: e1003713, 2013.CrossRefGoogle Scholar
  25. Gray M.W., Covello P.S.: RNA editing in plant mitochondria and chloroplasts.–FASEB J. 7: 64–71, 1993.CrossRefPubMedGoogle Scholar
  26. Hackett J.B., Shi X., Kobylarz A.T. et al.: An Organelle RNA Recognition Motif protein is required for photosystem II subunit psbF transcript editing.–Plant Physiol. 173: 2278–2293, 2017.PubMedPubMedCentralGoogle Scholar
  27. Hackett J.B., Lu Y.: Whole-transcriptome RNA-seq, gene set enrichment pathway analysis, and exon coverage analysis of two plastid RNA editing mutants.–Plant Signal. Behav. 12: e1312242, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hammani K., Okuda K., Tanz S.K. et al: A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites.–Plant Cell 21: 3686–3699, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hayes M.L., Giang K., Berhane B. et al.: Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. - J. Biol. Chem. 288: 36519–36529, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hayes M.L., Dang K.N., Diaz M.F. et al: A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity.–J. Biol. Chem. 290: 10136–10142, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hein A., Polsakiewicz M., Knoop V.: Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors.–BMC Evol. Biol. 16: 23, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hirose T., Sugiura M.: Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system.–EMBO J. 20: 1144–1152, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Karcher D., Bock R.: Identification of the chloroplast adenosinetoinosine tRNA editing enzyme.–RNA 15: 1251–1257, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kawahara Y., Zinshteyn B., Sethupathy P. et al.: Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. - Science 315: 1137–1140, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ke J., Chen R.-Z., Ban T. et al.: Structural basis for RNA recognition by a dimeric PPR-protein complex.–Nat. Struct. Mol. Biol. 20: 1377–1382, 2013.CrossRefPubMedGoogle Scholar
  36. Kotera E., Tasaka M., Shikanai T.: A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts.–Nature 433: 326–330, 2005.CrossRefPubMedGoogle Scholar
  37. Kupsch C., Ruwe H., Gusewski S. et al.: Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps.–Plant Cell 24: 4266–4280, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lynch M., Blanchard J.L.: Deleterious mutation accumulation in organelle genomes.–Genetica 102: 29, 1998.CrossRefPubMedGoogle Scholar
  39. Maris C., Dominguez C., Allain F.H.: The RNA recognition motif, a plastic RNA-binding platform to regulate posttranscriptional gene expression.–FEBS J. 272: 2118–2131, 2005.CrossRefPubMedGoogle Scholar
  40. Navaratnam N., Bhattacharya S., Fujino T. et al.: Evolutionary origins of apoB mRNA editing: catalysis by a cytidine deaminase that has acquired a novel RNA-binding motif at its active site.–Cell 81: 187–195, 1995.CrossRefPubMedGoogle Scholar
  41. Neiman M., Taylor D.R.: The causes of mutation accumulation in mitochondrial genomes.–P. Roy. Soc. B-Biol. Sci. 276: 1201–1209, 2009.CrossRefGoogle Scholar
  42. Nguyen C.D., Mansfield R.E., Leung W. et al.: Characterization of a family of RanBP2-type zinc fingers that can recognize single-stranded RNA.–J. Mol. Biol. 407: 273–283, 2011.CrossRefPubMedGoogle Scholar
  43. Okuda K., Myouga F., Motohashi R. et al.: Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing.–P. Natl. Acad. Sci. USA 104: 8178–8183, 2007.CrossRefGoogle Scholar
  44. Okuda K., Chateigner-Boutin A.L., Nakamura T. et al.: Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts.–Plant Cell 21: 146–156, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Okuda K., Shoki H., Arai M. et al.: Quantitative analysis of motifs contributing to the interaction between PLS-subfamily members and their target RNA sequences in plastid RNA editing.–Plant J. 80: 870–882, 2014.CrossRefPubMedGoogle Scholar
  46. Robbins J.C., Heller W.P., Hanson M.R.: A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript.–RNA 15: 1142–1153, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ruwe H., Castandet B., Schmitz-Linneweber C. et al.: Arabidopsis chloroplast quantitative editotype.–FEBS Lett. 587: 1429–1433, 2013.CrossRefPubMedGoogle Scholar
  48. Shi X., Bentolila S., Hanson M.R.: Organelle RNA recognition motif-containing (ORRM) proteins are plastid and mitochondrial editing factors in Arabidopsis.–Plant Signal. Behav. 11: e1167299, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shi X., Hanson M.R., Bentolila S.: Functional diversity of Arabidopsis organelle-localized RNA-recognition motifcontaining proteins.–WIREs RNA 8: e1420, 2017.CrossRefGoogle Scholar
  50. Stern D.B., Goldschmidt-Clermont M., Hanson M.R.: Chloroplast RNA metabolism.–Annu. Rev. Plant Biol. 61: 125–155, 2010.CrossRefPubMedGoogle Scholar
  51. Sun T., Germain A., Giloteaux L. et al.: An RNA recognition motif-containing protein is required for plastid RNA editing in Arabidopsis and maize.–P. Natl. Acad. Sci. USA 110: E1169–1178, 2013.CrossRefGoogle Scholar
  52. Sun T., Shi X., Friso G. et al: A zinc finger motif-containing protein is essential for chloroplast RNA editing.–PLoS Genet. 11: e1005028, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sun T., Bentolila S., Hanson M.R.: The unexpected diversity of plant organelle RNA editosomes.–Trends Plant Sci. 21: 962–973, 2016.CrossRefPubMedGoogle Scholar
  54. Takenaka M., Zehrmann A., Verbitskiy D. et al.: Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants.–P. Natl. Acad. Sci. USA 109: 5104–5109, 2012.CrossRefGoogle Scholar
  55. Takenaka M., Zehrmann A., Verbitskiy D. et al: RNA editing in plants and its evolution.–Annu. Rev. Genet. 47: 335–352, 2013.CrossRefPubMedGoogle Scholar
  56. Tillich M., Hardel S.L., Kupsch C. et al.: Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs.–P. Natl. Acad. Sci. USA 106: 6002–6007, 2009.CrossRefGoogle Scholar
  57. Tseng C.C., Sung T.Y., Li Y.C. et al.: Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant.–Plant Mol. Biol. 73: 309–323, 2010.CrossRefPubMedGoogle Scholar
  58. Vincenzetti S., Cambi A., Neuhard J. et al.: Cloning, expression, and purification of cytidine deaminase from Arabidopsis thaliana.–Protein Expr. Purif. 15: 8–15, 1999.CrossRefPubMedGoogle Scholar
  59. Wagoner J.A., Sun T., Lin L. et al.: Cytidine deaminase motifs within the DYW domain of two pentatricopeptide repeatcontaining proteins are required for site-specific chloroplast RNA editing.–J. Biol. Chem. 290: 2957–2968, 2015.CrossRefPubMedGoogle Scholar
  60. Xu J.-H., Messing J.: Maize haplotype with a helitron-amplified cytidine deaminase gene copy.–BMC Genetics 7: 1–13, 2006.CrossRefGoogle Scholar
  61. Yagi Y., Tachikawa M., Noguchi H. et al.: Pentatricopeptide repeat proteins involved in plant organellar RNA editing. - RNA Biol. 10: 1419–1425, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yang W., Chendrimada T.P., Wang Q. et al.: Modulation of microRNA processing and expression through RNA editing by ADAR deaminases.–Nat. Struct. Mol. Biol. 13: 13–21, 2006.CrossRefPubMedGoogle Scholar
  63. Yap A., Kindgren P., Colas des Francs-Small C. et al.: AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5, and also promotes atpF splicing in Arabidopsis and rice.–Plant J. 81: 661–669, 2015.CrossRefPubMedGoogle Scholar
  64. Yin P., Li Q., Yan C. et al.: Structural basis for the modular recognition of single-stranded RNA by PPR proteins.–Nature 504: 168–171, 2013.CrossRefPubMedGoogle Scholar
  65. Yu Q.-B., Jiang Y., Chong K. et al.: AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana.–Plant J. 59: 1011–1023, 2009.CrossRefPubMedGoogle Scholar
  66. Zehrmann A., Härtel B., Glass F. et al.: Selective homo- and heteromer interactions between the multiple organellar RNA editing factor (MORF) proteins in Arabidopsis thaliana.–J. Biol. Chem. 290: 6445–6456, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang F., Tang W., Hedtke B. et al.: Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing.–P. Natl. Acad. Sci. USA 111: 2023–2028, 2014.CrossRefGoogle Scholar
  68. Zhou W., Cheng Y., Yap A. et al.: The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth.–Plant J. 58: 82–96, 2009.CrossRefPubMedGoogle Scholar
  69. Zhou W., Karcher D., Bock R.: Identification of enzymes for adenosine-to-inosine editing and discovery of cytidine-touridine editing in nucleus-encoded transfer RNAs of Arabidopsis.–Plant Physiol. 166: 1985–1997, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesWestern Michigan UniversityKalamazooUSA

Personalised recommendations