Skip to main content

Susceptibility of an ascorbate-deficient mutant of Arabidopsis to high-light stress

Abstract

Ascorbate is an important antioxidant involved in both enzymatic and nonenzymatic reactions in plant cells. To reveal the function of ascorbate associated with defense against photo-oxidative damage, responses of the ascorbate-deficient mutant vtc2-1 of Arabidopsis thaliana to high-light stress were investigated. After high-light treatment at 1,600 μmol(photon) m–2 s–1 for 8 h, the vtc2-1 mutant exhibited visible photo-oxidative damage. The total ascorbate content was lower, whereas accumulation of H2O2 was higher in the vtc2-1 mutant than that in the wild type. The chlorophyll (Chl) content and PSII Chl fluorescence parameters, such as maximal quantum yield of PSII photochemistry, yield, and electron transport rate, in vtc2-1 mutant decreased more than that in the wild type, whereas the nonphotochemical quenching coefficient increased more in the wild type than that in vtc2-1 mutant. Therefore, the vtc2-1 mutant was more sensitive to high-light stress than the wild type. Accumulation of reactive oxygen species was mainly responsible for the damage of PSII in the vtc2-1 mutant under high light. The results indicate that ascorbate plays a critical role in maintaining normal photosynthetic function in plants under high-light stress.

This is a preview of subscription content, access via your institution.

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbic acid

AsA-GSH cycle:

ascorbate–glutathione cycle

CAT:

catalase

Chl:

chlorophyll

DAB:

diaminobenzidine

ETR:

electron transport rate

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fm′:

maximal fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

NPQ:

nonphotochemical quenching

ORF:

open reading frame

qN :

nonphotochemical quenching coefficient

qP :

photochemical quenching coefficient

RH:

relative humidity

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TCA:

trichloroacetic acid

ФPSII :

effective quantum yield of PSII photochemistry.

References

  1. Adams W.I., Demmig-Adams B., Verhoeven A. et al.: Photoinhibition during winter stress: Involvement of sustained xanthophyll cycle-dependent energy dissipation.–Funct. Plant Biol. 22: 261–276, 1995.

    CAS  Google Scholar 

  2. Agius F., González-Lamothe R., Caballero J.L. et al.: Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase.–Nat. Biotechnol. 21: 177–181, 2003.

    Article  PubMed  CAS  Google Scholar 

  3. Alscher R.G., Donahue J.L., Cramer C.L.: Reactive oxygen species and antioxidants: Relationships in green cells.–Physiol. Plantarum 100: 224–233, 1997.

    Article  CAS  Google Scholar 

  4. Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions.–Plant Physiol. 141: 391–396, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Conklin P., Barth C.: Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence.–Plant Cell Environ. 27: 959–970, 2004.

    Article  CAS  Google Scholar 

  6. Conklin P.L., Saracco S.A., Norris S.R. et al.: Identification of ascorbic acid-deficient Arabidopsis thaliana mutants.–Genetics 154: 847–856, 2000.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Conti E., Izaurralde E.: Nonsense-mediated mRNA decay: Molecular insights and mechanistic variations across species.–Curr. Opin. Cell Biol. 17: 316–325, 2005.

    Article  PubMed  CAS  Google Scholar 

  8. Ding Z.S., Zhou B.Y., Sun X.F. et al.: High light tolerance is enhanced by overexpressed PEPC in rice under drought stress.–Acta Agron. Sin. 38: 285–292, 2012.

    Article  CAS  Google Scholar 

  9. Dowdle J., Ishikawa T., Gatzek S. et al.: Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.–Plant J. 52: 673–689, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. Endo M., Nakamura S., Araki T. et al.: Phytochrome b in the mesophyll delays flowering by suppressing flowering locusT expression in Arabidopsis vascular bundles.–Plant Cell 17: 1941–1952, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Finkel T., Holbrook N.J.: Oxidants, oxidative stress and the biology of ageing.–Nature 408: 239–247, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Gallie D.R.: Increasing vitamin C content in plant foods to improve their nutritional value–successes and challenges.–Nutrients 5: 3424–3446, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gao Q., Zhang L.: Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient VTC1 mutants of arabidopsis thaliana.–J. Plant Physiol. 165: 138–148, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophy. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  15. Gillespie K.M., Ainsworth E.A.: Measurement of reduced, oxidized and total ascorbate content in plants.–Nat. Protoc. 2: 871–874, 2007.

    Article  PubMed  CAS  Google Scholar 

  16. Huang J.L., Wang S.H., Zhang Z.X.: [Effect of external asa on the photoinhibition of ginger leaves in vitro.]–Acta Bot. Boreali-Occ. Sin. 10: 2041–2046, 2008. [In Chinese]

    Google Scholar 

  17. Ishikawa T., Dowdle J., Smirnoff N.: Progress in manipulating ascorbic acid biosynthesis and accumulation in plants.–Physiol. Plantarum 126: 343–355. 2006.

    Article  CAS  Google Scholar 

  18. Ishikawa T., Shigeoka S.: Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms.–Biosci. Biotech. Bioch. 72: 1143–1154, 2008.

    Article  CAS  Google Scholar 

  19. Jander G., Norris S.R., Rounsley S.D. et al.: Arabidopsis mapbased cloning in the post-genome era.–Plant Physiol. 129: 440–450, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kotchoni S.O., Larrimore K.E., Mukherjee M. et al.: Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis.–Plant Physiol. 149: 803–815, 20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Laing W.A., Wright M.A., Cooney J. et al.: The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content.–P. Natl. Acad. Sci. USA 104: 9534–9539, 2007.

    Article  CAS  Google Scholar 

  22. Li F., Wu Q.Y., Sun Y.L. et al.: Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses.–Physiol. Plantarum 139: 421–434, 2010.

    CAS  Google Scholar 

  23. Linster C.L., Gomez T.A., Christensen K.C. et al.: Arabidopsis VTC2 encodes a GDP-l-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants.–J. Biol. Chem. 282: 18879–18885, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Locato V., Gadaleta C., De Gara L. et al.: Production of reactive species and modulation of antioxidant network in response to heat shock: A critical balance for cell fate.–Plant Cell Environ. 31: 1606–1619, 2008.

    Article  PubMed  CAS  Google Scholar 

  25. Lorence A., Chevone B.I., Mendes P. et al.: Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis.–Plant Physiol. 134: 1200–1205, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Müller-Moulé P., Conklin P.L., Niyogi K.K.: Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.–Plant Physiol. 128: 970–977, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Müller-Moulé P., Golan T., Niyogi K.K.: Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress.–Plant Physiol. 134: 1163–1172, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Müller-Moulé P.: An expression analysis of the ascorbate biosynthesis enzyme VTC2.–Plant Mol. Biol. 68: 31–41, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Noctor G., Veljovic-Jovanovic S., Foyer C.H.: Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling.–Philos. T. R. Soc. B 355: 1465–1475, 2000.

    Article  CAS  Google Scholar 

  30. Pekker I., Tel-Or E., Mittler R.: Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron-mediated oxidative stress in bean.–Plant Mol. Biol. 49: 429–438, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Pignocchi C., Foyer C.H.: Apoplastic ascorbate metabolism and its role in the regulation of cell signalling.–Curr Opin. Plant Biol. 6: 379–389, 2003.

    Article  PubMed  CAS  Google Scholar 

  32. Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.–BBABioenergetics 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  33. Romero-Puertas P.M., Rodríguez-Serrano S.M., Corpas F. et al.: Cadmium-induced subcellular accumulation of O2·and H2O2 in pea leaves.–Plant Cell Environ. 27: 1122–1134, 2004.

    Article  CAS  Google Scholar 

  34. Smirnoff N.: Plant resistance to environmental stress.–Curr. Opin. Biotechnol. 9: 214–219, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Smirnoff N.: Ascorbic acid: Metabolism and functions of a multifacetted molecule.–Curr. Opin. Plant Biol. 3: 229–235, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Sun Y.Y., Bi J.C., Zhao Z.C. et al.: [The advancement on leaf senescence in crops.]–Crops 4: 11–19, 2013. [In Chinese].

    Google Scholar 

  37. Wheeler G.L., Jones M.A., Smirnoff N.: The biosynthetic pathway of vitamin C in higher plants.–Nature 393: 365–369, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Wolucka B.A., van Montagu M.: GDP-mannose 3′, 5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants.–J. Biol. Chem. 278: 47483–47490, 2003.

    Article  PubMed  CAS  Google Scholar 

  39. Wolucka B.A., van Montagu M.: The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion.–Phytochemistry 68: 2602–2613, 2007.

    Article  PubMed  CAS  Google Scholar 

  40. Xie J.Q., Li G.X., Wang X.K. et al.: [Effect of exogenous ascorbic acid on photosynthesis and growth of rice under O3 stress.]–Chin. J. Eco-Agr. 17: 1176–1181. 2009. [In Chinese]

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.-L. Peng.

Additional information

Acknowledgements: This work was supported by National Natural Science Foundation of China (31570398, 31270287), the key project of Guangdong Province Natural Science Foundation 2015A030311023. The authors wish Prof. Govindjee a very happy 85th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, LD., Li, M., Chow, W.S. et al. Susceptibility of an ascorbate-deficient mutant of Arabidopsis to high-light stress. Photosynthetica 56, 427–432 (2018). https://doi.org/10.1007/s11099-017-0759-3

Download citation

Additional key words

  • Arabidopsis thaliana
  • ascorbic acid
  • high-light stress
  • chlorophyll fluorescence
  • reactive oxygen species