Advertisement

Photosynthetica

, Volume 56, Issue 1, pp 210–216 | Cite as

Quantification of bound bicarbonate in photosystem II

  • K. Tikhonov
  • D. Shevela
  • V. V. Klimov
  • J. Messinger
Article

Abstract

In this study, we presented a new approach for quantification of bicarbonate (HCO3) molecules bound to PSII. Our method, which is based on a combination of membrane-inlet mass spectrometry (MIMS) and 18O-labelling, excludes the possibility of “non-accounted” HCO3 by avoiding (1) the employment of formate for removal of HCO3 from PSII, and (2) the extremely low concentrations of HCO3/CO2 during online MIMS measurements. By equilibration of PSII sample to ambient CO2 concentration of dissolved CO2/HCO3, the method ensures that all physiological binding sites are saturated before analysis. With this approach, we determined that in spinach PSII membrane fragments 1.1 ± 0.1 HCO3 are bound per PSII reaction center, while none was bound to isolated PsbO protein. Our present results confirmed that PSII binds one HCO3 molecule as ligand to the non-heme iron of PSII, while unbound HCO3 optimizes the water-splitting reactions by acting as a mobile proton shuttle.

Additional key words

hydrogen carbonate inorganic carbon mass spectrometry Mn-stabilizing protein non-heme iron oxygen-evolving complex 

Abbreviations

Chl

chlorophyll

MIMS

membrane-inlet mass spectrometry

OEC

oxygen-evolving complex

PQ

plastoquinone

PQH2

plastoquinol

RC

reaction center

NHI

non-heme iron

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ago H., Adachi H., Umena Y. et al.: Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga.–J. Biol. Chem. 291: 5676–5687, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ananyev G., Nguyen T., Putnam-Evans C., Dismukes G.C.: Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of photosystem II.–Photochem. Photobiol. Sci. 4: 991–998, 2005.CrossRefPubMedGoogle Scholar
  3. Aoyama C., Suzuki H., Sugiura M., Noguchi T.: Flash-induced FTIR difference spectroscopy shows no evidence for the structural coupling of bicarbonate to the oxygen-evolving Mn cluster in photosystem II.–Biochemistry 47: 2760–2765, 2008.CrossRefPubMedGoogle Scholar
  4. Baranov S.V., Tyryshkin A.M., Katz D. et al.: Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation.–Biochemistry 43: 2070–2079, 2004.CrossRefPubMedGoogle Scholar
  5. Berthold D.A., Babcock G.T., Yocum C.F.: A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes.–FEBS Lett. 134: 231–234, 1981.CrossRefGoogle Scholar
  6. Blubaugh D.J., Govindjee: The molecular mechanism of the bicarbonate effect at the plastoquinone reductase site of photosynthesis.–In: {ieGovindjee (ed.): Molecular Biology of Photosynthesis. Pp. 441–484. Springer, Dordrecht 1988.CrossRefGoogle Scholar
  7. Brinkert K., De Causmaecker S., Krieger-Liszkay A. et al.: Bicarbonate-induced redox tuning in photosystem II for regulation and protection.–P. Natl. Acad. Sci. USA 113: 12144–12149, 2016.CrossRefGoogle Scholar
  8. Dasgupta J., Tyryshkin A.M., Dismukes G.C.: ESEEM spectroscopy reveals carbonate and an N-donor protein-ligand binding to Mn2+ in the photoassembly reaction of the Mn4Ca cluster in photosystem II.–Angew. Chem. Int. Ed. 46: 8028–8031, 2007.CrossRefGoogle Scholar
  9. Diamond W.D., Akinfiev N.N.: Solubility of CO2 in water from–1.5 to 100°C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling.–Fluid Phase Equilibr. 208: 265–290, 2003.CrossRefGoogle Scholar
  10. Enami I., Kamino K., Shen J.-R. et al.: Isolation and characterization of photosystem II complexes which lack lightharvesting chlorophyll a/b proteins but retain three extrinsic proteins related to oxygen evolution from spinach.–BBABioenergetics 977: 33–39, 1989.CrossRefGoogle Scholar
  11. Ford R.C., Evans M.C.W.: Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity.–FEBS Lett. 160: 159–164, 1983.CrossRefGoogle Scholar
  12. Govindjee, Weger H.G., Turpin D.H. et al.: Formate releases carbon dioxide/bicarbonate from thylakoid membranes - measurements by mass spectroscopy and infrared gas analyzer.–Naturwissenschaften 78: 168–170, 1991.CrossRefGoogle Scholar
  13. Govindjee, Xu C., van Rensen J.J.S.: On the requirement of bound bicarbonate for photosystem II activity.–Z. Naturforsch. 52: 24–32, 1997.CrossRefGoogle Scholar
  14. Guskov A., Gabdulkhakov A., Broser M. et al.: Recent progress in the crystallographic studies of photosystem II.–ChemPhysChem 11: 1160–1171, 2010.CrossRefPubMedGoogle Scholar
  15. Klimov V.V., Allakhverdiev S.I., Feyziev Y.M., Baranov S.V.: Bicarbonate requirement for the donor side of photosystem II.–FEBS Lett. 363: 251–255, 1995.CrossRefPubMedGoogle Scholar
  16. Klimov V.V., Allakhverdiev S.I., Nishiyama Y. et al.: Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations.–Funct. Plant Biol. 30: 797–803, 2003.CrossRefGoogle Scholar
  17. Klimov V.V., Baranov S.V.: Bicarbonate requirement for the water-oxidizing complex of photosystem II.–BBABioenergetics 1503: 187–196, 2001.CrossRefGoogle Scholar
  18. Klimov V.V., Baranov S.V., Allakhverdiev S.I.: Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation.–FEBS Lett. 418: 243–246, 1997.CrossRefPubMedGoogle Scholar
  19. Koroidov S., Shevela D., Shutova T. et al.: Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation.–P. Natl. Acad. Sci. USA 111: 6299–6304, 2014.CrossRefGoogle Scholar
  20. Kozlov Y.N., Tikhonov K.G., Zastrizhnaya O.M., Klimov V.V.: pH dependence of the composition and stability of MnIIIbicarbonate complexes and its implication for redox interaction of MnII with photosystem II.–J. Photoch. Photobio. B 101: 362–366, 2010.CrossRefGoogle Scholar
  21. McConnell I.L., Eaton-Rye J.J., van Rensen J.J.S.: Regulation of photosystem II electron transport by bicarbonate.–In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Pp. 475–500. Springer, Dordrecht 2012.CrossRefGoogle Scholar
  22. Messinger J., Badger M.R., Wydrzynski T.: Detection of one slowly exchanging substrate water molecule in the S3 state of photosystem II.–P. Natl. Acad. Sci. USA 92: 3209–3213, 1995.CrossRefGoogle Scholar
  23. Müh F., Glöckner C., Hellmich J., Zouni A.: Light-induced quinone reduction in photosystem II.–Biochim. Biophys. Acta 1817: 44–65, 2012.CrossRefPubMedGoogle Scholar
  24. Pobeguts O.V., Smolova T.N., Timoshevsky D.S., Klimov V.V.: Interaction of bicarbonate with the manganese-stabilizing protein of photosystem II.–J. Photoch. Photobio. B 100: 30–37, 2010.CrossRefGoogle Scholar
  25. Pobeguts O.V., Smolova T.N., Zastrizhnaya O.M., Klimov V.V.: Protective effect of bicarbonate against extraction of the extrinsic proteins of the water-oxidizing complex from photosystem II membrane fragments.–Biochim. Biophys. Acta 1767: 624–632, 2007.CrossRefPubMedGoogle Scholar
  26. Rappaport F., Diner B.A.: Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II.–Coord. Chem. Rev. 252: 259–272, 2008.CrossRefGoogle Scholar
  27. Shen J.-R., Katoh S.: Inactivation and calcium-dependent reactivation of oxygen evolution in photosystem II preparations treated at pH 3.0 or with high concentrations of NaCl.–Plant Cell Physiol. 32: 439–446, 1991.CrossRefGoogle Scholar
  28. Shen J.-R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis.–Annu. Rev. Plant Biol. 66: 23–48, 2015.CrossRefPubMedGoogle Scholar
  29. Shevela D., Eaton-Rye J.J., Shen J.-R., Govindjee.: Photosystem II and the unique role of bicarbonate: A historical perspective.–Biochim. Biophys. Acta 1817: 1134–1151, 2012.CrossRefPubMedGoogle Scholar
  30. Shevela D., Messinger J.: Studying the oxidation of water to molecular oxygen in photosynthetic and artificial systems by time-resolved membrane-inlet mass spectrometry.–Front. Plant Sci. 4: 473, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shevela D., Nöring B., Koroidov S. et al.: Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon.–Photosynth. Res. 117: 401–412, 2013.CrossRefPubMedGoogle Scholar
  32. Shevela D., Su J.H., Klimov V., Messinger J.: Hydrogencarbonate is not a tightly bound constituent of the wateroxidizing complex in photosystem II.–Biochim. Biophys. Acta 1777: 532–539, 2008.CrossRefPubMedGoogle Scholar
  33. Shutova T., Kenneweg H., Buchta J. et al.: The photosystem IIassociated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal.–EMBO J. 27: 782–791, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stemler A., Babcock G.T., Govindjee.: Effect of bicarbonate on photosynthetic oxygen evolution in flashing light in chloroplast fragments.–P. Natl. Acad. Sci. USA 71: 4679–4683, 1974.CrossRefGoogle Scholar
  35. Stemler A., Govindjee.: Bicarbonate ion as a critical factor in photosynthetic oxygen evolution.–Plant Physiol. 52: 119–123, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Stemler A.J.: The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg.–Photosynth. Res. 73: 177–183, 2002.CrossRefPubMedGoogle Scholar
  37. Ulas G., Olack G., Brudvig G.W.: Evidence against bicarbonate bound in the O2-evolving complex of photosystem II.–Biochemistry 47: 3073–3075, 2008.CrossRefPubMedGoogle Scholar
  38. Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.CrossRefPubMedGoogle Scholar
  39. van Rensen J.J.S.: Role of bicarbonate at the acceptor side of photosystem II.–Photosynth. Res. 73: 185–192, 2002.CrossRefPubMedGoogle Scholar
  40. van Rensen J.J.S., Klimov V.V.: Bicarbonate interactions.–In: Wydrzynski T., Satoh K. (ed.): Photosystem II. The Light-Driven Water:Plastoquinone Oxidoreductase. Pp. 329–346. Springer, Dordrecht 2005.CrossRefGoogle Scholar
  41. van Rensen J.J.S., Xu C., Govindjee.: Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis.–Physiol. Plantarum 105: 585–592, 1999.CrossRefGoogle Scholar
  42. Villarejo A., Shutova T., Moskvin O. et al: A photosystem IIassociated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution.–EMBO J. 21: 1930–1938, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vinyard D.J., Ananyev G.M., Dismukes G.C.: Photosystem II: The reaction center of oxygenic photosynthesis.–Annu. Rev. Biochem. 82: 577–606, 2013.CrossRefPubMedGoogle Scholar
  44. Wei X., Su X., Cao P. et al.: Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution.–Nature 534: 69–74, 2016.CrossRefPubMedGoogle Scholar
  45. Wydrzynski T., Govindjee.: New site of bicarbonate effect in photosystem II of photosynthesis–Evidence from chlorophyll fluorescence transients in spinach-chloroplasts.–Biochim. Biophys. Acta 387: 403–408, 1975.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • K. Tikhonov
    • 1
  • D. Shevela
    • 2
  • V. V. Klimov
    • 1
  • J. Messinger
    • 2
    • 3
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencePushchinoRussia
  2. 2.Department of Chemistry, Chemical Biological CentreUmeå UniversityUmeåSweden
  3. 3.Department of Chemistry, Molecular BiomimeticsÅngström Laboratory, Uppsala UniversityUppsalaSweden

Personalised recommendations