Skip to main content
Log in

Quantification of bound bicarbonate in photosystem II

  • Published:
Photosynthetica

Abstract

In this study, we presented a new approach for quantification of bicarbonate (HCO3) molecules bound to PSII. Our method, which is based on a combination of membrane-inlet mass spectrometry (MIMS) and 18O-labelling, excludes the possibility of “non-accounted” HCO3 by avoiding (1) the employment of formate for removal of HCO3 from PSII, and (2) the extremely low concentrations of HCO3/CO2 during online MIMS measurements. By equilibration of PSII sample to ambient CO2 concentration of dissolved CO2/HCO3, the method ensures that all physiological binding sites are saturated before analysis. With this approach, we determined that in spinach PSII membrane fragments 1.1 ± 0.1 HCO3 are bound per PSII reaction center, while none was bound to isolated PsbO protein. Our present results confirmed that PSII binds one HCO3 molecule as ligand to the non-heme iron of PSII, while unbound HCO3 optimizes the water-splitting reactions by acting as a mobile proton shuttle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

MIMS:

membrane-inlet mass spectrometry

OEC:

oxygen-evolving complex

PQ:

plastoquinone

PQH2 :

plastoquinol

RC:

reaction center

NHI:

non-heme iron

References

  • Ago H., Adachi H., Umena Y. et al.: Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga.–J. Biol. Chem. 291: 5676–5687, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ananyev G., Nguyen T., Putnam-Evans C., Dismukes G.C.: Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of photosystem II.–Photochem. Photobiol. Sci. 4: 991–998, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama C., Suzuki H., Sugiura M., Noguchi T.: Flash-induced FTIR difference spectroscopy shows no evidence for the structural coupling of bicarbonate to the oxygen-evolving Mn cluster in photosystem II.–Biochemistry 47: 2760–2765, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Baranov S.V., Tyryshkin A.M., Katz D. et al.: Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation.–Biochemistry 43: 2070–2079, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Berthold D.A., Babcock G.T., Yocum C.F.: A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes.–FEBS Lett. 134: 231–234, 1981.

    Article  CAS  Google Scholar 

  • Blubaugh D.J., Govindjee: The molecular mechanism of the bicarbonate effect at the plastoquinone reductase site of photosynthesis.–In: {ieGovindjee (ed.): Molecular Biology of Photosynthesis. Pp. 441–484. Springer, Dordrecht 1988.

    Chapter  Google Scholar 

  • Brinkert K., De Causmaecker S., Krieger-Liszkay A. et al.: Bicarbonate-induced redox tuning in photosystem II for regulation and protection.–P. Natl. Acad. Sci. USA 113: 12144–12149, 2016.

    Article  CAS  Google Scholar 

  • Dasgupta J., Tyryshkin A.M., Dismukes G.C.: ESEEM spectroscopy reveals carbonate and an N-donor protein-ligand binding to Mn2+ in the photoassembly reaction of the Mn4Ca cluster in photosystem II.–Angew. Chem. Int. Ed. 46: 8028–8031, 2007.

    Article  CAS  Google Scholar 

  • Diamond W.D., Akinfiev N.N.: Solubility of CO2 in water from–1.5 to 100°C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling.–Fluid Phase Equilibr. 208: 265–290, 2003.

    Article  CAS  Google Scholar 

  • Enami I., Kamino K., Shen J.-R. et al.: Isolation and characterization of photosystem II complexes which lack lightharvesting chlorophyll a/b proteins but retain three extrinsic proteins related to oxygen evolution from spinach.–BBABioenergetics 977: 33–39, 1989.

    Article  CAS  Google Scholar 

  • Ford R.C., Evans M.C.W.: Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity.–FEBS Lett. 160: 159–164, 1983.

    Article  CAS  Google Scholar 

  • Govindjee, Weger H.G., Turpin D.H. et al.: Formate releases carbon dioxide/bicarbonate from thylakoid membranes - measurements by mass spectroscopy and infrared gas analyzer.–Naturwissenschaften 78: 168–170, 1991.

    Article  CAS  Google Scholar 

  • Govindjee, Xu C., van Rensen J.J.S.: On the requirement of bound bicarbonate for photosystem II activity.–Z. Naturforsch. 52: 24–32, 1997.

    Article  CAS  Google Scholar 

  • Guskov A., Gabdulkhakov A., Broser M. et al.: Recent progress in the crystallographic studies of photosystem II.–ChemPhysChem 11: 1160–1171, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Klimov V.V., Allakhverdiev S.I., Feyziev Y.M., Baranov S.V.: Bicarbonate requirement for the donor side of photosystem II.–FEBS Lett. 363: 251–255, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Klimov V.V., Allakhverdiev S.I., Nishiyama Y. et al.: Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations.–Funct. Plant Biol. 30: 797–803, 2003.

    Article  CAS  Google Scholar 

  • Klimov V.V., Baranov S.V.: Bicarbonate requirement for the water-oxidizing complex of photosystem II.–BBABioenergetics 1503: 187–196, 2001.

    Article  CAS  Google Scholar 

  • Klimov V.V., Baranov S.V., Allakhverdiev S.I.: Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation.–FEBS Lett. 418: 243–246, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Koroidov S., Shevela D., Shutova T. et al.: Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation.–P. Natl. Acad. Sci. USA 111: 6299–6304, 2014.

    Article  CAS  Google Scholar 

  • Kozlov Y.N., Tikhonov K.G., Zastrizhnaya O.M., Klimov V.V.: pH dependence of the composition and stability of MnIIIbicarbonate complexes and its implication for redox interaction of MnII with photosystem II.–J. Photoch. Photobio. B 101: 362–366, 2010.

    Article  CAS  Google Scholar 

  • McConnell I.L., Eaton-Rye J.J., van Rensen J.J.S.: Regulation of photosystem II electron transport by bicarbonate.–In: Eaton-Rye J.J., Tripathy B.C., Sharkey T.D. (ed.): Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Pp. 475–500. Springer, Dordrecht 2012.

    Chapter  Google Scholar 

  • Messinger J., Badger M.R., Wydrzynski T.: Detection of one slowly exchanging substrate water molecule in the S3 state of photosystem II.–P. Natl. Acad. Sci. USA 92: 3209–3213, 1995.

    Article  CAS  Google Scholar 

  • Müh F., Glöckner C., Hellmich J., Zouni A.: Light-induced quinone reduction in photosystem II.–Biochim. Biophys. Acta 1817: 44–65, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Pobeguts O.V., Smolova T.N., Timoshevsky D.S., Klimov V.V.: Interaction of bicarbonate with the manganese-stabilizing protein of photosystem II.–J. Photoch. Photobio. B 100: 30–37, 2010.

    Article  CAS  Google Scholar 

  • Pobeguts O.V., Smolova T.N., Zastrizhnaya O.M., Klimov V.V.: Protective effect of bicarbonate against extraction of the extrinsic proteins of the water-oxidizing complex from photosystem II membrane fragments.–Biochim. Biophys. Acta 1767: 624–632, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F., Diner B.A.: Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II.–Coord. Chem. Rev. 252: 259–272, 2008.

    Article  CAS  Google Scholar 

  • Shen J.-R., Katoh S.: Inactivation and calcium-dependent reactivation of oxygen evolution in photosystem II preparations treated at pH 3.0 or with high concentrations of NaCl.–Plant Cell Physiol. 32: 439–446, 1991.

    Article  CAS  Google Scholar 

  • Shen J.-R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis.–Annu. Rev. Plant Biol. 66: 23–48, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Shevela D., Eaton-Rye J.J., Shen J.-R., Govindjee.: Photosystem II and the unique role of bicarbonate: A historical perspective.–Biochim. Biophys. Acta 1817: 1134–1151, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Shevela D., Messinger J.: Studying the oxidation of water to molecular oxygen in photosynthetic and artificial systems by time-resolved membrane-inlet mass spectrometry.–Front. Plant Sci. 4: 473, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shevela D., Nöring B., Koroidov S. et al.: Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon.–Photosynth. Res. 117: 401–412, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Shevela D., Su J.H., Klimov V., Messinger J.: Hydrogencarbonate is not a tightly bound constituent of the wateroxidizing complex in photosystem II.–Biochim. Biophys. Acta 1777: 532–539, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shutova T., Kenneweg H., Buchta J. et al.: The photosystem IIassociated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal.–EMBO J. 27: 782–791, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stemler A., Babcock G.T., Govindjee.: Effect of bicarbonate on photosynthetic oxygen evolution in flashing light in chloroplast fragments.–P. Natl. Acad. Sci. USA 71: 4679–4683, 1974.

    Article  CAS  Google Scholar 

  • Stemler A., Govindjee.: Bicarbonate ion as a critical factor in photosynthetic oxygen evolution.–Plant Physiol. 52: 119–123, 1973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stemler A.J.: The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg.–Photosynth. Res. 73: 177–183, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ulas G., Olack G., Brudvig G.W.: Evidence against bicarbonate bound in the O2-evolving complex of photosystem II.–Biochemistry 47: 3073–3075, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • van Rensen J.J.S.: Role of bicarbonate at the acceptor side of photosystem II.–Photosynth. Res. 73: 185–192, 2002.

    Article  PubMed  Google Scholar 

  • van Rensen J.J.S., Klimov V.V.: Bicarbonate interactions.–In: Wydrzynski T., Satoh K. (ed.): Photosystem II. The Light-Driven Water:Plastoquinone Oxidoreductase. Pp. 329–346. Springer, Dordrecht 2005.

    Chapter  Google Scholar 

  • van Rensen J.J.S., Xu C., Govindjee.: Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis.–Physiol. Plantarum 105: 585–592, 1999.

    Article  Google Scholar 

  • Villarejo A., Shutova T., Moskvin O. et al: A photosystem IIassociated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution.–EMBO J. 21: 1930–1938, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinyard D.J., Ananyev G.M., Dismukes G.C.: Photosystem II: The reaction center of oxygenic photosynthesis.–Annu. Rev. Biochem. 82: 577–606, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Wei X., Su X., Cao P. et al.: Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution.–Nature 534: 69–74, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T., Govindjee.: New site of bicarbonate effect in photosystem II of photosynthesis–Evidence from chlorophyll fluorescence transients in spinach-chloroplasts.–Biochim. Biophys. Acta 387: 403–408, 1975.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Shevela.

Additional information

This paper is dedicated to the memory of Prof. Vyacheslav V. Klimov (12 January 1945 – 9 May 2017), our dear colleague and co-author, a world leader in the field of photosynthesis research for almost five decades. Among many scientific achievements, Vyacheslav Klimov (known to many as “Slava”) was one of the discoverers of pheophytin as the primary electron acceptor in PSII, and rediscoverer of “bicarbonate effect” on the electron donor side of PSII.

Acknowledgements: The authors thank Govindjee and A. Stemler for fruitful and stimulating discussions on “bicarbonate effects” over the years, the reviewers and the editor for their valuable comments and suggestions, and T.N. Smolova for isolation of PsbO protein. This work was supported by the Russian Foundation for basic research (grant No. 17-04-01011), by the Knut and Wallenberg Foundation, and by the Swedish Science Foundation (VR, grant No. 2016-05183).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, K., Shevela, D., Klimov, V.V. et al. Quantification of bound bicarbonate in photosystem II. Photosynthetica 56, 210–216 (2018). https://doi.org/10.1007/s11099-017-0758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0758-4

Additional key words

Navigation