Skip to main content
Log in

Fluorescence induction of photosynthetic bacteria

  • Published:
Photosynthetica

Abstract

The kinetics of bacteriochlorophyll fluorescence in intact cells of the purple nonsulfur bacterium Rhodobacter sphaeroides were measured under continuous and pulsed actinic laser diode (808 nm wavelength and maximum 2 W light power) illumination on the micro- and millisecond timescale. The fluorescence induction curve was interpreted in terms of a combination of photochemical and triplet fluorescence quenchers and was demonstrated to be a reflection of redox changes and electron carrier dynamics. By adjustment of the conditions of single and multiple turnovers of the reaction center, we obtained 11 ms–1 and 120 μs–1 for the rate constants of cytochrome c23+ detachment and cyclic electron flow, respectively. The effects of cytochrome c2 deletion and chemical treatments of the bacteria and the advantages of the fluorescence induction study on the operation of the electron transport chain in vivo were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

Chl:

chlorophyll

F0 :

minimal fluorescence yield of the dark-adapted state

Fmax :

maximal fluorescence yield of the light-adapted state

Fv :

variable fluorescence

References

  • Asztalos E., Italiano F., Milano F. et al.: Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria.–Photoch. Photobio. Sci. 9: 1218–1223, 2010.

    Article  CAS  Google Scholar 

  • Asztalos E., Sipka G., Maróti P.: Fluorescence relaxation in intact cells of photosynthetic bacteria: donor and acceptor side limitations of reopening of the reaction center.–Photosynth. Res. 124: 31–44, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Bína D., Litvín R., Vácha F.: Absorbance changes accompanying the fast fluorescence induction in the purple bacterium Rhodobacter sphaeroides.–Photosynth. Res. 105: 115–121, 20

    Article  PubMed  CAS  Google Scholar 

  • Chi S.C., Mothersole D.J., Dilbeck P. et al.: Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.–Biochim. Biophys. Acta 1847: 189–201, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comayras F., Jungas C., Lavergne J.: Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center antenna complexes.–J. Biol. Chem. 280: 11203–11213, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Crofts A.R., Meinhardt S.W., Jones K.R., Snozzi M.: The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: A modified Q-cycle mechanism.–Biochim. Biophys. Acta 723: 202–218, 1983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Rivoyre M., Ginet N., Bouyer P., Lavergne J.: Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study.–Biochim. Biophys. Acta 1797: 1780–1794, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Donohue T.J., Kaplan S.: Genetic techniques in rhodospirillaceae.–Methods Enzymol. 204: 459–485, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Duysens L.N.M.: Transfer of light energy within the pigment systems present in photosynthesizing cells.–Nature 168: 548–550, 1951.

    Article  PubMed  CAS  Google Scholar 

  • Geyer T., Helms V.: A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the cytochrome bc1 complex.–Biophys. J. 91: 921–926, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joliot P., Joliot A., Vermeglio A.: Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes.–BBA-Bioenergetics 1706: 204–214, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kautsky H., Hirsch A.: [New experiments on carbonic acid assimilation.]–Naturwissenschaften 19: 964, 1931. [In German]

    Article  CAS  Google Scholar 

  • Kis M., Asztalos E., Sipka G., Maróti P.: Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells.–Photosynth. Res. 122: 261–273, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Kis M., Sipka G., Asztalos E. et al.: Purple non-sulfur photosynthetic bacteria monitor environmental stresses.–J. Photoch. Photobio. B 151: 110–117, 2015.

    Article  CAS  Google Scholar 

  • Klamt S., Grammel H., Straube R. et al: Modelling the electron transport chain of purple nonsulfur bacteria.–Mol. Syst. Biol. 4: 156, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koblizek M., Shih J.D., Breitbart S.I. et al.: Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence.–Biochim. Biophys. Acta 1706: 220–231, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis P., Asztalos E., Gingl Z., Maróti P.: Kinetic bacteriochlorophyll fluorometer.–Photosynth. Res. 105: 73–82, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Maróti P.: Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides.–Eur. Biophys. J. 37: 1175–1184, 20

    Article  PubMed  CAS  Google Scholar 

  • Maróti P.: Induction and relaxation of bacteriochlorophyll fluorescence in photosynthetic bacteria.–In: Pessarakli M. (ed): Handbook of Photosynthesis, 3rd ed. Pp. 463–483. CRC Press, Boca Raton–London–New York 2016.

    Google Scholar 

  • Niederman R.A.: Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.–Biochim. Biophys. Acta 1857: 232–246, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T.: Molecular cloning: a laboratory manual, 2nd ed. Page A.1. Cold Spring Harbor Laboratory Press, New York 1989.

    Google Scholar 

  • Siström W.R.: The kinetics of the synthesis of photopigments in Rhodopseudomonas spheroides.–J. Gen. Microbiol. 28: 607–616, 1962.

    Article  PubMed  Google Scholar 

  • Siström, W.R., Transfer of chromosomal genes mediated by plasmid r68.45 in Rhodopseudomonas sphaeroides.–J. Bacteriol. 131: 526–532, 1977

    PubMed  PubMed Central  Google Scholar 

  • Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.–Photosynth. Res. 113: 15–61, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Trissl H.W.: Antenna organization in purple bacteria investigated by means of fluorescence induction curves.–Photosynth. Res. 47: 175–185, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maróti.

Additional information

Acknowledgements: We are indebted to Dr. Emese Asztalos for her contribution to the early phase of this work. The authors gratefully acknowledge financial support from GINOP-2.3.2-15-2016-00001, OTKA-K 112688, Photosynthesis–Life from Light–Foundation (Hungary) (G. Sipka), COST (CM1306), EFOP-3.6.2-16-2017-00001 (M. Kis and P. Maróti), the Bill and Roberta Blankenship CENS Research Endowment, the Hal and Alma Reagan Faculty Leave, and the van Dyck Faculty Leave (J.L. Smart).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipka, G., Kis, M., Smart, J.L. et al. Fluorescence induction of photosynthetic bacteria. Photosynthetica 56, 125–131 (2018). https://doi.org/10.1007/s11099-017-0756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0756-6

Additional keywords

Navigation