Photosynthetica

, Volume 56, Issue 1, pp 125–131 | Cite as

Fluorescence induction of photosynthetic bacteria

Article
  • 51 Downloads

Abstract

The kinetics of bacteriochlorophyll fluorescence in intact cells of the purple nonsulfur bacterium Rhodobacter sphaeroides were measured under continuous and pulsed actinic laser diode (808 nm wavelength and maximum 2 W light power) illumination on the micro- and millisecond timescale. The fluorescence induction curve was interpreted in terms of a combination of photochemical and triplet fluorescence quenchers and was demonstrated to be a reflection of redox changes and electron carrier dynamics. By adjustment of the conditions of single and multiple turnovers of the reaction center, we obtained 11 ms–1 and 120 μs–1 for the rate constants of cytochrome c23+ detachment and cyclic electron flow, respectively. The effects of cytochrome c2 deletion and chemical treatments of the bacteria and the advantages of the fluorescence induction study on the operation of the electron transport chain in vivo were discussed.

Additional keywords

bacterial photosynthesis electron transfer fluorescence transients intact cells 

Abbreviations

BChl

bacteriochlorophyll

Chl

chlorophyll

F0

minimal fluorescence yield of the dark-adapted state

Fmax

maximal fluorescence yield of the light-adapted state

Fv

variable fluorescence

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asztalos E., Italiano F., Milano F. et al.: Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria.–Photoch. Photobio. Sci. 9: 1218–1223, 2010.CrossRefGoogle Scholar
  2. Asztalos E., Sipka G., Maróti P.: Fluorescence relaxation in intact cells of photosynthetic bacteria: donor and acceptor side limitations of reopening of the reaction center.–Photosynth. Res. 124: 31–44, 2015.CrossRefPubMedGoogle Scholar
  3. Bína D., Litvín R., Vácha F.: Absorbance changes accompanying the fast fluorescence induction in the purple bacterium Rhodobacter sphaeroides.–Photosynth. Res. 105: 115–121, 20CrossRefPubMedGoogle Scholar
  4. Chi S.C., Mothersole D.J., Dilbeck P. et al.: Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.–Biochim. Biophys. Acta 1847: 189–201, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Comayras F., Jungas C., Lavergne J.: Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center antenna complexes.–J. Biol. Chem. 280: 11203–11213, 2005.CrossRefPubMedGoogle Scholar
  6. Crofts A.R., Meinhardt S.W., Jones K.R., Snozzi M.: The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: A modified Q-cycle mechanism.–Biochim. Biophys. Acta 723: 202–218, 1983.CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Rivoyre M., Ginet N., Bouyer P., Lavergne J.: Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study.–Biochim. Biophys. Acta 1797: 1780–1794, 2010.CrossRefPubMedGoogle Scholar
  8. Donohue T.J., Kaplan S.: Genetic techniques in rhodospirillaceae.–Methods Enzymol. 204: 459–485, 1991.CrossRefPubMedGoogle Scholar
  9. Duysens L.N.M.: Transfer of light energy within the pigment systems present in photosynthesizing cells.–Nature 168: 548–550, 1951.CrossRefPubMedGoogle Scholar
  10. Geyer T., Helms V.: A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the cytochrome bc1 complex.–Biophys. J. 91: 921–926, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Joliot P., Joliot A., Vermeglio A.: Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes.–BBA-Bioenergetics 1706: 204–214, 2005.CrossRefPubMedGoogle Scholar
  12. Kautsky H., Hirsch A.: [New experiments on carbonic acid assimilation.]–Naturwissenschaften 19: 964, 1931. [In German]CrossRefGoogle Scholar
  13. Kis M., Asztalos E., Sipka G., Maróti P.: Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells.–Photosynth. Res. 122: 261–273, 2014.CrossRefPubMedGoogle Scholar
  14. Kis M., Sipka G., Asztalos E. et al.: Purple non-sulfur photosynthetic bacteria monitor environmental stresses.–J. Photoch. Photobio. B 151: 110–117, 2015.CrossRefGoogle Scholar
  15. Klamt S., Grammel H., Straube R. et al: Modelling the electron transport chain of purple nonsulfur bacteria.–Mol. Syst. Biol. 4: 156, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Koblizek M., Shih J.D., Breitbart S.I. et al.: Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence.–Biochim. Biophys. Acta 1706: 220–231, 2005.CrossRefPubMedGoogle Scholar
  17. Kocsis P., Asztalos E., Gingl Z., Maróti P.: Kinetic bacteriochlorophyll fluorometer.–Photosynth. Res. 105: 73–82, 2010.CrossRefPubMedGoogle Scholar
  18. Maróti P.: Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides.–Eur. Biophys. J. 37: 1175–1184, 20CrossRefPubMedGoogle Scholar
  19. Maróti P.: Induction and relaxation of bacteriochlorophyll fluorescence in photosynthetic bacteria.–In: Pessarakli M. (ed): Handbook of Photosynthesis, 3rd ed. Pp. 463–483. CRC Press, Boca Raton–London–New York 2016.Google Scholar
  20. Niederman R.A.: Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.–Biochim. Biophys. Acta 1857: 232–246, 2016.CrossRefPubMedGoogle Scholar
  21. Sambrook J., Fritsch E.F., Maniatis T.: Molecular cloning: a laboratory manual, 2nd ed. Page A.1. Cold Spring Harbor Laboratory Press, New York 1989.Google Scholar
  22. Siström W.R.: The kinetics of the synthesis of photopigments in Rhodopseudomonas spheroides.–J. Gen. Microbiol. 28: 607–616, 1962.CrossRefPubMedGoogle Scholar
  23. Siström, W.R., Transfer of chromosomal genes mediated by plasmid r68.45 in Rhodopseudomonas sphaeroides.–J. Bacteriol. 131: 526–532, 1977PubMedPubMedCentralGoogle Scholar
  24. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.–Photosynth. Res. 113: 15–61, 2012.CrossRefPubMedGoogle Scholar
  25. Trissl H.W.: Antenna organization in purple bacteria investigated by means of fluorescence induction curves.–Photosynth. Res. 47: 175–185, 1996.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Department of Medical PhysicsUniversity of SzegedSzegedHungary
  2. 2.Department of Plant BiologyHungarian Academy of Science, Biological Research CentreSzegedHungary
  3. 3.Department of Biological SciencesUniversity of Tennessee at MartinMartinUSA

Personalised recommendations