Photosynthetica

, Volume 56, Issue 1, pp 62–66 | Cite as

Chloroplast ribonucleoprotein-like proteins of the moss Physcomitrella patens are not involved in RNA stability and RNA editing

Brief Communication
  • 32 Downloads

Abstract

Many RNA recognition motif (RRM)-containing proteins are known to exist in chloroplasts. Major members of the RRM protein family, which are chloroplast ribonucleoproteins (cpRNPs), have been investigated in seed plants, including tobacco and Arabidopsis thaliana, but never in early land plants, such as bryophytes. In this study, we surveyed RRM proteins encoded in the moss Physcomitrella patens genome and predicted 25 putative chloroplast RRM proteins. Among them, two RRM-containing proteins, PpRBP2a and PpRBP2b, resembled cpRNPs and were thus referred to as cpRNP-like proteins. However, knockout mutants of either one or two PpRBP2 genes exhibited a wild type-like phenotype. Unlike Arabidopsis cpRNPs, the levels of mRNA accumulation in chloroplasts were not affected in the PpRBP2 knockout mutants. In addition, the efficiency of RNA editing was also not altered in the mutants. This suggests that PpRBP2a and 2b may be functionally distinct from Arabidopsis cpRNPs.

Additional key words

pentatricopeptide repeat protein photosynthesis gene posttranscriptional regulation RNA-binding protein RNA processing 

Abbreviations

5-CLF

5-formyltetrahydrofolate cyclo-ligase

cpRNP

chloroplast ribonucleoprotein

GFP

green fluorescence protein

GUS

ß-glucuronidase

hnRNP

heterogeneous nuclear ribonucleoprotein

KO

knockout

PABP

poly(A)-binding protein

PPR

pentatricoepetide repeat

RRM

RNA recognition motif

snRNP

small nuclear ribonucleoprotein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11099_2017_755_MOESM1_ESM.pdf (259 kb)
Supplementary Fig. 1. Schematic diagrams showing the domain structure of PpPPR_3 and newly identified chloroplastic RRM proteins.
11099_2017_755_MOESM2_ESM.pdf (1.1 mb)
Supplementary Fig. 2. Confirmation of chloroplast localization of RRM proteins.
11099_2017_755_MOESM3_ESM.pdf (319 kb)
Supplementary Fig. 3. Phenotype of knockout (KO) mutants of RRM protein genes.

References

  1. Allen J.F., de Paula W.B.M., Puthiyaveetil S. et al: A structural phylogenetic map for chloroplast photosynthesis.–Trends Plant Sci. 16: 645–655, 2011.CrossRefPubMedGoogle Scholar
  2. Amme S., Matros A., Schlesier B. et al.: Proteome analysis of cold stress response in Arabidopsis thaliana using DIGEtechnology.–J. Exp. Bot. 57: 1537–1546, 2006.CrossRefPubMedGoogle Scholar
  3. Belostotsky D.A.: Unexpected complexity of poly(A)-binding protein gene families in flowering plants: Three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation.–Genetics 163: 311–319, 2003.PubMedPubMedCentralGoogle Scholar
  4. del Campo E.M.: Post-transcriptional control of chloroplast gene expression.–Gene Reg. Syst. Biol. 3: 31–47, 2009.Google Scholar
  5. Fesenko I., Seredina A., Arapidi G. et al.: The Physcomitrella patens chloroplast proteome changes in response to protoplastation.–Front. Plant Sci. 7: 1661, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Goto S., Kawaguchi Y., Sugita C. et al.: P-class pentatricopeptide repeat protein PTSF1 is required for splicing of the plastid pretRNAIle in Physcomitrella patens.–Plant J. 86: 493–503, 2016.CrossRefPubMedGoogle Scholar
  7. Hirose T., Sugiura M.: Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system.–EMBO J. 20: 1144–1152, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ichinose M., Sugita C., Yagi Y. et al.: Two DYW subclass PPR proteins are involved in RNA editing of ccmFc and atp9 transcripts in the moss Physcomitrella patens: First complete set of PPR editing factors in plant mitochondria.–Plant Cell Physiol. 54: 1907–1916, 2013.CrossRefPubMedGoogle Scholar
  9. Kupsch C., Ruwe H., Gusewski S. et al.: Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps.–Plant Cell 24: 4266–4280, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Li Y., Sugiura M.: Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs.–EMBO J. 9: 3059–3066, 1990.PubMedPubMedCentralGoogle Scholar
  11. Maris C., Dominguez C., Allain F.H.T.: The RNA recognition motif, a plastic RNA-binding platform to regulate posttranscriptional gene expression.–FEBS J. 272: 2118–2131, 2005.CrossRefPubMedGoogle Scholar
  12. Miyata Y., Sugita M.: Tissue- and stage-specific RNA editing of rps14 transcripts in moss (Physcomitrella patens) chloroplasts.–J. Plant Physiol. 161: 113–115, 2004.CrossRefPubMedGoogle Scholar
  13. Mueller S.J., Lang D., Hoernstein S.N.W. et al.: Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation.–Plant Physiol. 164: 2081–2095, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Nagai K., Oubridge C., Jessen T.H. et al.: Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A.–Nature 348: 515–520, 1990.CrossRefPubMedGoogle Scholar
  15. Nakamura T., Ohta M., Sugiura M. et al.: Chloroplast ribonucleoproteins are associated with both mRNAs and intron-containing precursor tRNAs.–FEBS Lett. 460: 437–441, 1999.CrossRefPubMedGoogle Scholar
  16. Nakamura T., Ohta M., Sugiura M. et al.: Chloroplast ribonucleoproteins function as a stabilizing factor of ribosomefree mRNAs in the stroma.–J. Biol. Chem. 276: 147–152, 2001.CrossRefPubMedGoogle Scholar
  17. Nickelsen J.: Chloroplast RNA-binding proteins.–Curr. Genet. 43: 392–399, 2003.CrossRefPubMedGoogle Scholar
  18. Pribat A., Blaby I.K., Lara-Núñez A. et al: A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism.–Funct. Integr. Genomic. 11: 467–478, 2011.CrossRefGoogle Scholar
  19. Ruwe H., Kupsch C., Teubner M. et al.: The RNA-recognition motif in chloroplasts.–J. Plant Physiol. 168: 1361–1371, 2011.CrossRefPubMedGoogle Scholar
  20. Sarhadi E., Mahfoozi S., Hosseini S.A. et al.: Cold acclimation proteome analysis reveals close link between the up-regulation of low-temperature associated proteins and vernalization fulfillment.–J. Proteome Res. 9: 5658–5667, 2010.CrossRefPubMedGoogle Scholar
  21. Schuster G., Gruissem W.: Chloroplast mRNA 3’ end processing requires a nuclear-encoded RNA-binding protein.–EMBO J. 10: 1493–1502, 1991.PubMedPubMedCentralGoogle Scholar
  22. Stern D., Goldschmidt-Clermont M., Hanson M.R.: Chloroplast RNA metabolism.–Annu. Rev. Plant Biol. 61: 125–155, 2010.CrossRefPubMedGoogle Scholar
  23. Sugita M., Ichinose M., Ide M. et al.: Architecture of the PPR gene family in the moss Physcomitrella patens.–RNA Biol. 10: 1439–1445, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sun T., Germain A., Giloteaux L. et al.: An RNA recognition motif-containing protein is required for plastid RNA editing in Arabidopsis and maize.–P. Natl. Acad. Sci. USA 110: E1169–E1178, 2013.CrossRefGoogle Scholar
  25. Teubner M., Fuß J., Kühn K. et al.: The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development.–Plant J. 89: 472–485, 2017.CrossRefPubMedGoogle Scholar
  26. Tillich M., Hardel S.L., Kupsch C. et al.: Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs.–P. Natl. Acad. Sci. USA 106: 6002–6007, 2009.CrossRefGoogle Scholar
  27. Tillich M., Beick S., Schmitz-Linneweber C.: Chloroplast RNAbinding proteins. Repair and regulation of chloroplast transcripts.–RNA Biol. 7: 172–178, 2010.CrossRefPubMedGoogle Scholar
  28. Wang S., Bai G., Wang S. et al.: Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in Arabidopsis.–PLoS Genet. 12: e1006027, 2016.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Center for Gene ResearchNagoya UniversityChikusa-ku, NagoyaJapan
  2. 2.Institute of Transformative Bio-MoleculesNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations