Skip to main content
Log in

Lotus corniculatus L. response to carbon dioxide concentration and radiation level variations

  • Original Paper
  • Published:
Photosynthetica

Abstract

Carbon dioxide concentration and light conditions may greatly vary between mountainous and lowland areas determining the photosynthetic performance of plants species. This paper aimed to evaluate the photosynthetic responses of Lotus corniculatus, growing in a mountain and a lowland grassland, under low and high radiation and CO2 concentration. Net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration were measured while the water-use efficiency and the ratio of variable to maximal fluorescence were calculated. Photosynthetic response curves to different levels of radiation and intercellular CO2 partial pressure were estimated. Our results showed that high radiation and CO2 concentration enhanced water-use efficiency of plants at both sites, enabling them to use more efficiently the available water reserves under drought conditions. The increase of radiation and CO2 concentration would enhance the photosynthetic performance of the mountainous population of L. corniculatus, which overall seems to express higher phenotypic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AQE:

apparent quantum efficiency

C i :

intercellular CO2 concentration

CE:

carboxylation efficiency

CO2 CP:

CO2 compensation point

E:

transpiration rate

Fv/Fm :

ratio of variable to maximal fluorescence

g s :

stomatal conductance

LCP:

photosynthetic light-compensation point

LSP:

photosynthetic light-saturation point

P N :

net photosynthetic rate

P Nmax :

light-saturated (maximum) photosynthetic rate

P Nsat :

photosynthesis at saturating CO2

R D :

dark respiration rate

RDPI:

relative distance plasticity index

RH:

relative humidity

T a :

air temperature

VPD:

vapor pressure deficit

WUE:

instantaneous water-use efficiency

References

  • Abtew W., Melesse A.: Vapor pressure alculation Methods.–In: Abtew W., Melesse A. (ed.): Evaporation and Evapotranspiration. Pp. 53–62. Springer, Amsterdam 2013.

    Chapter  Google Scholar 

  • Ainsworth E.A., Davey P.A., Bernacchi C.J. et al.: A metaanalysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield.–Glob. Change Biol. 8: 695–709, 2002.

    Article  Google Scholar 

  • Ainsworth E.A., Rogers A., Nelson R. et al.: Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max.–Agr. Forest. Meteorol. 122: 85–94, 2004.

    Article  Google Scholar 

  • Alkemade R., Reid R.S., van den Berg M. et al.: Assessing the impacts of livestock production on biodiversity in rangeland ecosystems.–P. Natl. Acad. Sci. USA 110: 20900–20905, 2013.

    Article  CAS  Google Scholar 

  • Allen-Diaz B., Chapin F.S., Diaz S. et al.: Rangelands in a changing climate: impacts, adaptations, and mitigation.–In: Watson R.T., Zinyowera M.C., Moss R.H. (ed.): Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change. Pp. 131–158. Cambridge University Press, Cambridge 1996.

    Google Scholar 

  • Awada T., Radoglou K., Fotelli M.N. et al.: Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes.–Tree Physiol. 23: 33–41, 2003.

    Article  PubMed  Google Scholar 

  • Bazzaz F.A., Carlson R.W.: Photosynthetic acclimation to variability in the light environment of early and late successional plants.–Oecologia 54: 313–316, 1982.

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi C.J., Calfapietra C., Davey P.A. et al.: Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice.–New Phytol. 159: 609–621, 2003.

    Article  CAS  Google Scholar 

  • Beuselinck P.R., Grant W.F.: Birdsfoot trefoil.–In: Barnes R.F., Miller D.A., Nelson C.J. (ed.): Forages, 5th edition Vol 1, An Introduction to Grassland Agriculture. Pp. 237–248. Iowa State University Press, Ames 1995.

    Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77-K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Bollig C., Feller U.: Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes.–Agric. Ecosyst. Environ. 188: 212–220, 2014.

    Article  Google Scholar 

  • Carter E.B., Theodorou M.K., Morris P.: Responses of Lotus corniculatus to environmental change.–New Phytol. 136: 245–253, 1997.

    Article  Google Scholar 

  • Chapin III F.S., Matson A.P., Vitousek P.: Principles of Terrestrial Ecosystem Ecology. Pp. 529. Springer Sci. Business Media, New York, 2011.

    Book  Google Scholar 

  • Cornelissen J.H.C., Lavorel S., Garnier E. et al.: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.–Aust. J. Bot. 51: 335–380, 2003.

    Article  Google Scholar 

  • Dalmolin A.C., Dalmagro H.J., Lobo F.D.A et al.: Photosynthetic light and carbon dioxide response of the invasive tree, Vochysia divergens Pohl, to experimental flooding and shading.–Photosynthetica 51: 379–386, 2013.

    Article  CAS  Google Scholar 

  • Dias-Filho M.B.: Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade.–Sci. Agric. 59: 65–68, 2002.

    Article  Google Scholar 

  • Escaray F.J., Menendez A.B., Gárriz A. et al.: Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils.–Plant Sci. 182: 121–133, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic (CO2) assimilation in leaves of C3 species.–Planta 149: 78–90, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Frame J., Charlton J.F.L., Laidlaw A.S.: Temperate Forage Legumes. Pp. 327. CAB International, Wallingford 1998.

    Google Scholar 

  • Frei E.R., Ghazoul J., Matter P. et al.: Plant population differentiation and climate change: responses of grassland species along an elevational gradient.–Glob. Change Biol. 20: 441–455, 2014.

    Article  Google Scholar 

  • Friend A.D., Woodward F.I.: Evolutionary and ecophysiological responses of mountain plants to the growing season environment.–Adv. Ecol. Res. 20: 59–124, 1990.

    Article  Google Scholar 

  • Horton J.L., Neufeld H.S.: Photosynthetic responses of Microstegium vimineum (Trin) A Camus, a shade-tolerant, C4 grass, to variable light environments.–Oecologia 114: 11–19, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys LR.: Tropical Pasture Utilization. Pp. 206. Cambridge University Press, Cambridge 1991.

    Book  Google Scholar 

  • Inostroza L., Acuña H., Tapia G.: Relationships between phenotypic variation in osmotic adjustment, water-use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L.–Chil. J. Agric. Res. 75: 3–12, 2015.

    Article  Google Scholar 

  • Jones H.: What is water use efficiency?–In: Bacon M.A. (ed.): Water Use Efficiency in Plant Biology. Pp. 27–41. Blackwell Publ., Oxford 2004.

    Google Scholar 

  • Karatassiou M., Noitsakis B.: Changes of the photosynthetic behaviour in annual C3 species at late successional stage under environmental drought conditions.–Photosynthetica 48: 377–382, 2010.

    Article  CAS  Google Scholar 

  • Karatassiou M., Parisi Z.M., Sklavou P. et al.: The impact of transhumant livestock system on the diversity of two mountainous grasslands in Northern Greece.–Opt. Méditerr. 109: 499–503, 2014.

    Google Scholar 

  • Körner C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Pp. 344. Springer, Heidelberg 2003.

    Book  Google Scholar 

  • Körner C., Diemer M.: In situ photosynthesis responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude.–Funct. Ecol. 1: 179–194, 1987.

    Article  Google Scholar 

  • Körner C., Diemer M.: Evidence that plants from high altitudes retains their greater photosynthetic efficiency under elevated CO2.–Funct. Ecol. 8: 58–68, 1994.

    Article  Google Scholar 

  • Körner C., Farquhar G.D., Roksandic Z.: A global survey of carbon isotope discrimination in plants from high altitude.–Oecologia 74: 623–632, 1988.

    Article  PubMed  Google Scholar 

  • Kostopoulou P., Karatassiou M.: Photosynthetic response of Bromus inermis in grasslands of different altitudes.–Turk. J. Agric. For. 40: 642–653, 2016.

    Article  Google Scholar 

  • Kumar N., Kumar S., Ahuja P.S.: Photosynthetic characteristics of Hordeum, Triticum, Rumex, and Trifolium species at contrasting altitudes.–Photosynthetica 43: 195–201, 2005.

    Article  CAS  Google Scholar 

  • Lewis J.D., Lucash M., Olszyk D.M., Tingey D.T.: Stomatal responses of Douglas-fir seedlings to elevated carbon dioxide and temperature during the third and fourth years of exposure.–Plant Cell Environ. 25: 1411–1421, 2002.

    Article  Google Scholar 

  • Long S.P., Ainsworth E.A., Rogers A. et al.: Rising atmospheric carbon dioxide: plants FACE the future.–Annu. Rev. Plant Biol. 55: 591–628, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Maherali H., Reid C.D., Polley H.W. et al.: Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland.–Plant Cell Environ. 25: 557–566, 2002.

    Article  CAS  Google Scholar 

  • Mavromatis G.: [Bioclimatic Map of Greece.] Pp. 63. Institution of Forest Research, Athens, Greece 1978. [In Greek]

    Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–568, 2000.

    CAS  PubMed  Google Scholar 

  • Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J. et al.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.–New Phytol. 149: 247–264, 2001.

    Article  Google Scholar 

  • Nelder J.A., Mead R.: A simplex method for function minimization.–Computer J. 7: 308–313, 1965.

    Article  Google Scholar 

  • Osmond C.B., Grace S.C.: Perspectives on photoinhibition and photorespiration in the field–quintessential inefficiencies of the light and dark reactions of photosynthesis.–J. Exp. Bot. 46: 1351–1362, 1995.

    Article  CAS  Google Scholar 

  • Parisi Z.M., Rapti D., Sklavou P. et al.: Grazing as a tool to maintain floristic diversity and herbage production in mountainous areas in northwest Greece.–Opt. Méditerr. 109: 523–526, 2014.

    Google Scholar 

  • Pearcy R.W., Ehleringer J.: Comparative ecophysiology of C3 and C4 plants.–Plant Cell Environ. 7: 1–13, 1984.

    Article  CAS  Google Scholar 

  • Peterson P.R., Sheaffer C.C., Hall M.H.: Drought effects on perennial forage legume yield and quality.–Agron. J. 84: 774–779, 1992.

    Article  Google Scholar 

  • Price M.F., Byers A.C., Friend D.A. et al.: Mountain Geography: Physical and Human Dimensions. Pp. 400. Univ. California Press, Berkeley-Los Angeles 2013.

    Google Scholar 

  • Prioul J.L., Chartier P.: Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used.–Ann. Bot.-London 41: 789–800, 1977.

    Article  Google Scholar 

  • Reddy A.R., Rasineni G.K., Raghavendra A.S.: The impact of global elevated CO2 concentration on photosynthesis and plant productivity.–Curr. Sci. 99: 46–57, 2010.

    CAS  Google Scholar 

  • Reich P.B., Ellsworth D.S., Walters M.B.: Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups.–Funct. Ecol. 12: 948–958, 1998.

    Article  Google Scholar 

  • Reich P.B., Tilman D., Craine J. et al.: Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species.–New Phytol. 150: 435–448, 2001.

    Article  CAS  Google Scholar 

  • Shangguan Z.P., Shao M.A., Dyckmans J.: Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.–Environ. Exp. Bot. 44: 141–149, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a non intrusive indicator for rapid assessment of in vivo photosynthesis.–In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis Ecological Studies 100. Pp. 49–70. Springer-Verlag, Berlin 1994.

    Google Scholar 

  • Steel R.G.D., Torrie J.H.: Principles and Procedures of Statistics, 2nd ed. Pp. 672. McGraw-Hill, New York 1980.

    Google Scholar 

  • Trnka M., Bartošová L., Schaumberger A. et al.: Climate change and impact on European grasslands.–Grassland Sci. Eur. 16: 39–51, 2011.

    Google Scholar 

  • Valladares F., Sanchez-Gomez D., Zavala M.A.: Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications.–J. Ecol. 94: 1103–1116, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is part of the project “The dynamics of the transhumant sheep and goat farming system in Greece. Influences on biodiversity” which is co-funded by the European Union (European Social Fund) through the Action “THALIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karatassiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostopoulou, P., Karatassiou, M. Lotus corniculatus L. response to carbon dioxide concentration and radiation level variations. Photosynthetica 55, 522–531 (2017). https://doi.org/10.1007/s11099-016-0671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0671-2

Additional key words

Navigation