Skip to main content
Log in

Underestimated chlorophyll a fluorescence measurements on Buxus microphylla red winter leaves

  • Original papers
  • Published:
Photosynthetica

Abstract

Leaves under stressful conditions usually show downregulated maximum quantum efficiency of photosystem II [inferred from variable to maximum chlorophyll (Chl) a fluorescence (Fv/Fm), usually lower than 0.8], indicating photoinhibition. The usual method to evaluate the degree of photoinhibition in winter red leaves is generally by measuring the Fv/Fm on the red adaxial surface. Two phenotypes of overwintering Buxus microphylla ‘Wintergreen’ red leaves, with different measuring site and leaf thickness, were investigated in order to elucidate how red pigments in the outer leaf layer affected the Chl a fluorescence (Fv/Fm) and photochemical reflectance index. Our results showed that the Fv/Fm measured on leaves with the same red surface, but different leaf thickness, exhibited a slightly lower value in half leaf (separated upper and lower layers of leaves by removing the leaf edge similarly as affected by winter freezing and thawing) than that in the intact leaf (without removing the leaf edge), and the Fv/Fm measured on the red surface was significantly lower than that on the inner or backlighted green surface of the same thickness. Our results suggest that the usual measurement of Fv/Fm on red adaxial surface overestimates the actual degree of photoinhibition compared with that of the whole leaf in the winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Car:

carotenoids

Fm :

maximum fluorescence

F0 :

minimum fluorescence

Fv/Fm :

maximum quantum efficiency of PSII (Fv = Fm - F0)

R/G:

red (adaxial)/green (abaxial)

G/R:

green (adaxial)/red (abaxial)

PRI:

photochemical reflectance index

References

  • Adams W.W., Demmig-Adams B.: Lessons from nature: A personal perspective.–In: Demmig-Adams B., Garab G., Adams W.W., Govindjee (ed.): Non-photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Pp. 45–72. Springer, Dordrecht. 2014.

    Google Scholar 

  • Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Bernini D., Caucia F., Boiocchi M.: Application of the Vis-NIR Avaspec-2048 portable automatic spectrometer to distinguish GEM quality materials. — Neues Jb. Miner. Abh. 185: 281–288, 2009.

    Article  CAS  Google Scholar 

  • Campbell D., Hurry V., Clarke A.K. et al.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. — Microbiol. Mol. Biol. R. 62: 667–683, 1998.

    CAS  Google Scholar 

  • Demmig-Adams B., Garab G., Adams W.W., Govindjee (ed.): Non-photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Pp. 531–552. Springer, Dordrecht. 2014.

    Google Scholar 

  • di Domenico D.F., Lucchese F., Magri D.: Buxus in Europe: Late quaternary dynamics and modern vulnerability. — Perspect. Plant Ecol. 14: 354–362, 2012.

    Article  Google Scholar 

  • Duc A.L., Parsons L.R., Pair J.C.: Growth, survival, and aesthetic quality of boxwood cultivars as affected by landscape exposure. — HortScience 35: 205–208, 2000.

    Google Scholar 

  • Gamon J.A., Surfus J.S.: Assessing leaf pigment content and activity with a reflectometer. — New Phytol. 143: 105–117, 1999.

    Article  CAS  Google Scholar 

  • Govindjee. Chlorophyll a fluorescence: A bit of basics and history.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 1–42. Kluwer Academic, Dordrecht 2004.

    Google Scholar 

  • Govindjee, Amesz J., Fork D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 99–133. Academic Press, Orlando 1986.

    Google Scholar 

  • Hacker J., Neuner G.: Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). — Tree Physiol. 27: 1661–1670, 2007.

    Article  PubMed  Google Scholar 

  • Han Q., Katahata S., Kakubari Y., Mukai Y.: Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. — Tree Physiol. 24: 609–616, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Han Q., Shinohara K., Kakubari Y., Mukai Y.: Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica. — Plant Cell Environ. 26: 715–723, 2003.

    Article  CAS  Google Scholar 

  • Hormaetxe K., Becerril J.M., Fleck I. et al.: Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: Increased protection of photosynthetic tissues? — J. Exp. Bot. 56: 2629–2636, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Hormaetxe K., Becerril J.M., Hernández A. et al.: Plasticity of photoprotective mechanisms of Buxus sempervirens L. Leaves in response to extreme temperatures. — Plant Biol. 9: 59–68, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hormaetxe K., Hernández A., Becerril J.M., García-Plazaola J.I.: Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves. — Plant Biol. 6: 325–332, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Hughes N.M.: Winter leaf reddening in ‘evergreen’ species. — New Phytol. 190: 573–581, 2011.

    Article  PubMed  Google Scholar 

  • Hughes N.M., Burkey K.O., Cavender-Bares J. et al.: Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species. — J. Exp. Bot. 63: 1895–1905, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Ida K., Masamoto K., Maoka T. et al.: The leaves of the common box, Buxus sempervirens (Buxaceae), become red as the level of a red carotenoid, anhydroeschscholtzxanthin, increases. — J. Plant. Res. 108: 369–376, 1995.

    Article  CAS  Google Scholar 

  • Jiang X.R., Peng J.G., Guo L. et al.: [Relationship between winter leaf reddening and carotenoids, reactive oxygen species in Buxus microphylla L.] — J. Beijing Forest. Univ. 37: 93–99, 2015. [In Chinese]

    Google Scholar 

  • Koiwa H., Ikeda T., Yoshida Y.: Reversal of chromoplasts to chloroplasts in Buxus leaves. — Bot. Mag.-Shokubutsu-gakuzasshi 99: 233–240, 1986.

    Article  Google Scholar 

  • Lichtenthaler H.K., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. — Photosynthetica 43: 379–393, 2005.

    Article  CAS  Google Scholar 

  • Merzlyak M., Solovchenko A., Pogosyan S.: Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. Leaves under high-light stress with special reference to its photoprotective function. — Photoch. Photobio. Sci. 4: 333–340, 2005.

    Article  CAS  Google Scholar 

  • Oguchi R., Douwstra P., Fujita T. et al.: Intra-leaf gradients of photoinhibition induced by different color lights: Implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. — New Phytol. 191: 146–159, 2011.

    Article  PubMed  Google Scholar 

  • Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Kluwer Academic, Dordrecht 2004.

    Google Scholar 

  • Papageorgiou G.C., Govindjee: The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: Definitions, timelines, viewpoints, open questions.–In: Demmig-Adams B., Garab G., Adams W.W., Govindjee (ed.): Non-photochemical Quenching and Energy Dissipation In Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Pp. 1–44. Springer, Dordrecht 2014.

    Google Scholar 

  • Roháček K., Barták M.: Technique of the modulated chlorophyll fluorescence basic concepts, useful parameters, and some applications. — Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Roháček K., Soukupová J., Barták M.: Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress.–In: Schoefs B. (ed.): Plant Cell Compartments–Selected Topics. Pp. 41–104. Research Signpost, Kerala 41–104, 2008.

    Google Scholar 

  • Schreiber U., Kühl M., Klimant I., Reising H.: Measurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobe. — Photosynth. Res. 47: 103–109, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U.: Chlorophyll Fluorescence and Photosynthetic Energy Conversion: Simple Introductory Experiments with the TEACHING-PAM Chlorophyll Fluorometer. Pp. 3–73. Heinz Walz GmbH, Effeltrich 1997.

    Google Scholar 

  • Silva-Cancino M.C., Esteban R., Artetxe U., Plazaola J.I.: Patterns of spatio-temporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses. — Physiol. Plantarum 144: 289–301, 2012.

    Article  CAS  Google Scholar 

  • Verhoeven A.: Sustained energy dissipation in winter evergreens. — New Phytol. 201: 57–65, 2014.

    Article  Google Scholar 

  • Vogelmann T.C., Evans J.R.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. — Plant Cell Environ. 25: 1313–1323, 2002.

    Article  Google Scholar 

  • Vogelmann T.C., Han T.: Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. — Plant Cell Environ. 23: 1303–1311, 2000.

    Article  CAS  Google Scholar 

  • Warren C.: Estimating the internal conductance to CO2 movement. — Funct. Plant Biol. 33: 431–442, 2006.

    Article  CAS  Google Scholar 

  • Weng J., Jhaung L., Jiang J. et al.: Down-regulation of photosystem 2 efficiency and spectral reflectance in mango leaves under very low irradiance and varied chilling treatments. — Photosynthetica 44: 248–254, 2006.

    Article  CAS  Google Scholar 

  • Zeliou K., Manetas Y., Petropoulou Y.: Transient winter leaf reddening in Cistus creticus characterizes weak (stresssensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis. — J. Exp. Bot. 60: 3031–3042, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X., Govindjee, Baker N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. — Planta 223: 114–133, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Additional information

Acknowledgments: This work was supported by the Beijing Municipal Science & Technology Commission (Z08050602970801). Authors thank to three reviewers for their valuable comments, which helped improve this manuscript.

J.G. Peng and X.R Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J.G., Jiang, X.R., Xu, J. et al. Underestimated chlorophyll a fluorescence measurements on Buxus microphylla red winter leaves. Photosynthetica 55, 561–567 (2017). https://doi.org/10.1007/s11099-016-0660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0660-5

Additional key words

Navigation