, Volume 54, Issue 2, pp 243–250 | Cite as

Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions

  • A. C. Meneguelli-Souza
  • A. P. Vitória
  • T. O. Vieira
  • M. S. O. Degli-Esposti
  • C. M. M. Souza
Original papers


Arsenic is a critical contaminant that is released into the environment through geochemical processes and anthropic actions. Two independent hydroponic experiments were performed to evaluate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to As under various stress conditions. In experiment 1, water hyacinth was exposed to As5+ at concentrations of 0, 0.2, 2.0, and 20 mg L−1 for 0, 2, and 4 d; in experiment 2, water hyacinth was exposed at concentrations of 0, 0.025, 0.05, and 0.1 mg L−1 for 0, 10, and 20 d. In both experiments, As accumulation in plant tissue was proportional to its increase in the nutrient solution; As concentrations were higher in roots than in shoots. Detrimental effects of As on gas exchange were observed and were more pronounced in experiment 1. In experiment 1, at the beginning on the second day of exposure, significant decreases of maximum photochemical efficiency of PSII (Fv/Fm), variable chlorophyll fluorescence (Fv/F0), and photosynthetic pigment contents were observed in plants exposed to 2.0 and 20 mg(As5+) L−1. It indicated that damage to the photosynthetic apparatus had occurred. No changes in Fv/Fm, Fv/F0, and contents of photosynthetic pigments were observed in the plants grown in the presence of 0.2 mg(As5+) L−1 (in experiment 1) or after any of the treatments in experiment 2, indicating plant tolerance. Elevated nonphotochemical quenching was observed in experiment 2 after 20 d of exposure to As; it was as a part of protection mechanisms of the photosynthetic apparatus in these plants. The results obtained here indicate that the use of water hyacinth for As5+ removal from highly impacted environments is limited but that it is effective in remediating sites with a low contamination.

Additional key words

carotenoid chlorosis photosynthesis remediation senescence trace element 







intercellular CO2 concentration




minimal fluorescence yield of the dark-adapted state


maximal fluorescence yield of the dark-adapted state


variable fluorescence


variable chlorophyll fluorescence


maximum photochemical efficiency of PSII


stomatal conductance


nonphotochemical quenching


net photosynthetic rate


photochemical quenching


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azcue J.M., Nriagu J.O.: Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. — J. Geochem. Explor. 52: 81–89, 1995.CrossRefGoogle Scholar
  2. Björkman O., Demmig B.: Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin. — Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  3. Bolhar-Nordenkampf H.R., Long S.P., Baker N.R.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. — Func. Ecol. 3: 497–514, 1989.CrossRefGoogle Scholar
  4. Borba R.P., Figueiredo B.R., Rawlins B., Matschullat J.: Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. — Environ. Geol. 44: 39–52, 2003.Google Scholar
  5. Borba R.P., Figueiredo B.R., Cavalcanti J.A.: [Arsenic in groundwater in Ouro Preto and Mariana, Iron Quadrangle (MG).] — Geociências 57: 45–51, 2004. [In Portuguese]Google Scholar
  6. Burns J., Fraser P.D., Bramley P.M.: Identification and quantification of carotenoids, tocopherols and chlorophyll in commonly consumed fruits and vegetables. — Phytochemistry 62: 939–947, 2003.CrossRefPubMedGoogle Scholar
  7. CONAMA nº 357. March 17. Published in DOU nº 53, march 18. Section 1, 58–63, Ministério do Meio Ambiente, 2005. [In Portuguese]Google Scholar
  8. Demmig-Adams B., Adams W.W.: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. — Trend. Plant Sci. 1: 21–26, 1996.CrossRefGoogle Scholar
  9. Farnese F.S., Oliveira J.A., Gusman G.S. et al.: Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. — Int. J. Phyto-remediat. 16: 123–137, 2014.CrossRefGoogle Scholar
  10. Garg N., Singla P.: Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. — Environ. Chem. Lett. 9: 303–321, 2011.CrossRefGoogle Scholar
  11. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  12. Giri A.K., Patel R.K.: Phytoaccumulation potential and toxicity of arsenic ions by Eichhornia crassipes in hydroponic system. — J. Bioremed. Biodegrad. 3: 2–6, 2012.CrossRefGoogle Scholar
  13. Gonçalves J.A.C., Lena J.C., Paiva J.F. et al.: Arsenic in the groundwater of Ouro Preto (Brazil): its temporal behavior as influenced by the hydric regime and hydrogeology. — Environ. Geol. 53: 785–793, 2007.CrossRefGoogle Scholar
  14. Gusman G.S., Oliveira J.A., Farnese F.S. et al.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. — Acta Physiol. Plant. 35: 1201–1209, 2013.CrossRefGoogle Scholar
  15. He J., Lee S.K., Dodd I.C.: Limitations to photosynthesis of lettuce growth under tropical conditions: alleviation by rootzone cooling. — J. Exp. Bot. 52: 1323–1330, 2001.CrossRefPubMedGoogle Scholar
  16. Hoagland D.R., Arnon D.I.: The Water Culture Method for Growing Plants without Soil. Pp. 34. California Agriculture Station, Berkeley 1950.Google Scholar
  17. Iriel A., Dundas G., Cirelli A.F. et al.: Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. — Chemosphere 119: 697–703, 2015.CrossRefPubMedGoogle Scholar
  18. Jain C.K., Ali I.: Arsenic: occurrence, toxicity and speciation techniques. — Water Res. 34: 4304–4312, 2000.CrossRefGoogle Scholar
  19. Jana S.: Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and bio-chemical plant parameters. — Water Air Soil Poll. 38: 105–109, 1988.Google Scholar
  20. Jiang Q.Q., Singh B.R.: Effect of different forms and sources of arsenic on crop yield and arsenic concentration. — Water Air Soil Poll. 74: 321–343, 1994.Google Scholar
  21. Karimi N., Shayesteh L.S., Ghasmpour H. et al.: Effects of arsenic on growth, photosynthetic activity, and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. — J. Plant Growth Regul. 32: 823–830, 2013.CrossRefGoogle Scholar
  22. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349, 1991.CrossRefGoogle Scholar
  23. Lage-Pinto F., Oliveira J.G., Cunha M.D. et al.: Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. — Environ. Exp. Bot. 64: 307–313, 2008.CrossRefGoogle Scholar
  24. Lichtenthaler H.K., Kuhn G., Prenzel U. et al.: Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. — Physiol. Plantarum 56: 183–188, 2006.CrossRefGoogle Scholar
  25. Li X.P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. — Nature 403: 391–395, 2000.CrossRefPubMedGoogle Scholar
  26. Li M., Zhang J., Ling T. et al.: Ecophysiological responses of Jussiaea rapens to cadmium exposure. — Aquat. Bot. 88: 347–352, 2008.CrossRefGoogle Scholar
  27. Ma L.Q., Komar K.M., Tu C. et al.: A fern that hyperaccumulates arsenic. — Nature 409: 579–579, 2001.CrossRefPubMedGoogle Scholar
  28. Maleva M.G., Nekrasova G.F., Borisova G.G. et al.: Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. — Russ. J. Plant Physl+ 59: 190–197, 2012.CrossRefGoogle Scholar
  29. Martínez-Sánchez M.J., Martínez-López S., García-Lorenzo M.L. et al.: Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. — Geoderma 160: 535–541, 2011.CrossRefGoogle Scholar
  30. Mathews S., Ma L.Q., Rathinasabapathi B. et al.: Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L. — Bioresource Technol. 101: 8024–8030, 2010.CrossRefGoogle Scholar
  31. Meharg A.A., Hartley-Whitaker J.: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. — New Phytol. 154: 29–43, 2002.CrossRefGoogle Scholar
  32. Oliveira J.G., Alves P.L.C.A., Magalhães A.C.N.: The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings. The protective action of chloroplastid pigments. — Braz. J. Plant Physiol. 14: 95–104, 2002.Google Scholar
  33. Paiva L.B., Oliveira J.G., Azevedo R.A. et al.: Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. — Environ. Exp. Bot. 65: 403–409, 2009.CrossRefGoogle Scholar
  34. Päivöke A.E.A., Simola L.K.: Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content and phytase activity. — Ecotox. Environ. Safe. 49: 111–121, 2001.CrossRefGoogle Scholar
  35. Pereira F.J., Castro E.M., Oliveira C. et al.: [Anatomical and physiological mechanisms of water hyacinth plants to arsenic contamination tolerance.] — Planta Daninha 29: 259–267, 2011. [In Portuguese]CrossRefGoogle Scholar
  36. Rabelo G.R., Vitória A.P., da Silva M.V.A. et al.: Structural and ecophysiological adaptations to forest gaps. — Trees-Struct. Funct. 27: 259–272, 2013.CrossRefGoogle Scholar
  37. Rezende P.S., Moura P.A.S., Durão W.A.J. et al.: Arsenic and mercury mobility in Brazilian sediments from the São Francisco River Basin. — J. Braz. Chem. Soc. 22: 910–918, 2011.CrossRefGoogle Scholar
  38. Robinson B., Duwing C., Bolan N. et al.: Uptake of arsenic by New Zealand watercress (Lepidium sativum). — Sci. Total Environ. 301: 67–73, 2003.CrossRefPubMedGoogle Scholar
  39. Rohácek K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. — Photosynthetica 40: 13–29, 2002.CrossRefGoogle Scholar
  40. Salt D.E., Smith R.D., Raskin I.: Phytoremediation. — Annu. Rev. Plant Phys. 49: 643–668, 1998.CrossRefGoogle Scholar
  41. Schmöger M., Oven M., Grill E.: Detoxification of arsenic by phytochelatins in plants. — Plant Physiol. 122: 793–802, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schützendübel A., Polle A.: Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. — J. Exp. Bot. 53: 1351–1365, 2002.CrossRefPubMedGoogle Scholar
  43. Singh N.K., Pandey G.C., Rai U.N. et al.: Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. — Bull. Environ. Contam. Toxicol. 74: 857–863, 2005.CrossRefPubMedGoogle Scholar
  44. Singh N., Ma L.Q., Srivastava M. et al.: Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. — Plant Sci. 170: 274–282, 2006.CrossRefGoogle Scholar
  45. Singh N., Ma L.Q., Va J.C. et al.: Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. — Environ. Pollut. 157: 2300–2305, 2009.CrossRefPubMedGoogle Scholar
  46. Smart R.M., Barko J.W.: Laboratory culture of submersed freshwater macrophytes on natural sediments. — Aquat. Bot. 21: 251–263, 1985.CrossRefGoogle Scholar
  47. Smedley P.L., Kinniburgh D.G.: Sources and Behavior of Arsenic in Natural Water. United Nations Synthesis Report on Arsenic in Drinking Water. Pp. 61. WHO, Geneva 2001.Google Scholar
  48. Soltan M.E., Rashed M.N.: Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. — Adv. Environ. Res. 7: 321–334, 2003.CrossRefGoogle Scholar
  49. Souza V.L., Silva D.C., Santana K.B. et al.: Effects of cadmium on the anatomy and photosynthesis of two aquatic macrophytes. — Acta Bot. Bras. 23: 342–354, 2009.Google Scholar
  50. Srivastava S., Mishra S., Tripathi R.D. et al.: Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. — Environ. Sci. Technol. 41: 2930–2936, 2007.CrossRefPubMedGoogle Scholar
  51. Stoeva N., Bineva T.: Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. — Bulgarian J. Agric. Sci. 29: 87–95, 2003.Google Scholar
  52. Stoeva N., Berova M., Zlatev Z.: Physiological response of maize to arsenic contamination. — Biol. Plantarum 47: 449–452, 2003.CrossRefGoogle Scholar
  53. Stoeva N., Berova M., Zlatev Z.: Effect of arsenic on some physiological parameters in bean plants. — Biol. Plantarum 49: 293–296, 2005.CrossRefGoogle Scholar
  54. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.CrossRefPubMedGoogle Scholar
  55. Verkley J.A.C., Schat H.: Mechanisms of metal tolerance in higher plants. — In: Shaw A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 179–193. CRC Press, New York 1992.Google Scholar
  56. Vieira T.O., Degli-Espositi M.S.O., Souza G.M. et al.: Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): Response to irradiance gradient in tropical forest. — Photosynthetica 53: 11–22, 2015.CrossRefGoogle Scholar
  57. Vitória A.P., Lage-Pinto F., Campaneli L.B. et al.: Ecophysiological adaptation and metal accumulation in water hyacinth from two tropical rivers. — Braz. J. Plant. Physiol. 22: 49–59, 2010.CrossRefGoogle Scholar
  58. Vitória A.P., Lage-Pinto F., Campaneli L.B. et al.: Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart.) Solms] due to anthropogenic stress in Brazilian rivers. — Braz. Arch. Biol. Technol. 54: 1059–1068, 2011.CrossRefGoogle Scholar
  59. Vitória, A.P., Santos, J.L.S., Salomão, M.S.M. B. et al.: Influence of ecologic type, seasonality, and origin of macrophyte in metal accumulation, anatomy and ecophysiology of Eichhornia crassipes and Eichhornia azurea. — Aquat. Bot. 125: 9–16, 2015.CrossRefGoogle Scholar
  60. Xue P.Y., Yan C.Z.: Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. — Chemosphere 85: 1176–1181, 2011.CrossRefPubMedGoogle Scholar
  61. Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.CrossRefGoogle Scholar
  62. Zhao F.J., Ma J.F., Meharq A.A. et al.: Arsenic uptake and metabolism in plants. — New Phytol. 181: 777–794, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  • A. C. Meneguelli-Souza
    • 1
  • A. P. Vitória
    • 1
  • T. O. Vieira
    • 1
  • M. S. O. Degli-Esposti
    • 1
  • C. M. M. Souza
    • 1
  1. 1.Laboratório de Ciências Ambientais, Centro de Biociência e BiotecnologiaUniversidade Estadual do Norte FluminenseCampos dos GoytacazesBrazil

Personalised recommendations