Advertisement

Photosynthetica

, Volume 54, Issue 1, pp 148–151 | Cite as

Lanthanum improves salt tolerance of maize seedlings

  • R. Q. Liu
  • X. J. Xu
  • S. Wang
  • C. J. Shan
Brief Communication

Abstract

In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (P N), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, P N, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.

Additional key words

antioxidant enzyme lanthanum chloride photosynthesis salinity Zea mays 

Abbreviations

APX

ascorbate peroxidase

Car

carotenoids

CAT

catalase

Chl

chlorophyll

Fv/Fm

maximum photochemical efficiency of PSII

GPX

glutathione peroxidase

JA

jasmonic acid

MDA

malondialdehyde

PN

net photosynthetic rate

ΦPSII

effective quantum yield of PSII

qN

nonphotochemical quenching

qP

photochemical quenching

ROS

reactive oxygen species

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aremu A.O., Masondo N.A., Sunmonu T.O. et al.: A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaClstressed tomato plants. — Planta 240: 877–889, 2014.CrossRefPubMedGoogle Scholar
  2. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  3. Ferreira-Silva S.L., Voigt E.L., Silva E.N. et al.: Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. — Biol. Plantarum 56: 172–176, 2012.CrossRefGoogle Scholar
  4. Giannopolitis C.N., Ries S.K.: Superoxide dismutases occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Guo B., Xu L.L., Guan Z.J. et al.: Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir. — Biol. Trace Elem. Res. 147: 334–340, 2012.CrossRefPubMedGoogle Scholar
  6. Hanachi S., Van Labeke M.C., Mehouachi T.: Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. — Photosynthetica 52: 57–62, 2014.CrossRefGoogle Scholar
  7. He Z.Q., Zou Z.R., He C.X.: [Effect of AMF on GSH-Px activity and cell membrane osmosis of tomato.] — J. Northwest Sci-Tech. Univ. Agri. For. 34: 53–57, 2006. [In Chinese]Google Scholar
  8. Hodges D.M., Andrews C.J., Johnson D.A. et al.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. — Physiol. Plantarum 98: 685–692, 1996.CrossRefGoogle Scholar
  9. Hong F.S., Wei Z.G., Zhao G.W.: [The relationship between lanthanum and chlorophyll content in Spinacia oleracea L..] — Sci. China Ser. C 31: 392–400, 2001. [In Chinese]Google Scholar
  10. Huang G., Wang L., Zhou Q.: Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation. — Biol. Trace Elem. Res. 151: 105–112, 2013.CrossRefPubMedGoogle Scholar
  11. Jiang W.J., Zhang Z.Y., Li Z.J.: [Effects of LaCl3 on absorption of mineral nutrients in internodal cells of Chara.] — J. Chin. Soc. Rare Earths 26: 797, 2008. [In Chinese]Google Scholar
  12. Lichtenthaler H.K., Wellburn A.L.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. — Biochem. Soc. Trans. 11: 591–593, 1983.CrossRefGoogle Scholar
  13. Mehta P., Allakhverdiev S.I., Jajoo A.: Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). — Photosynth. Res. 105: 249–255, 2010.CrossRefPubMedGoogle Scholar
  14. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  15. Prochazkova D., Sairam R.K., Srivastava G.C. et al.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. — Plant Sci. 161: 765–771, 2001.CrossRefGoogle Scholar
  16. Rubio M.C., Bustos-Sanmamed P., Clemente M.R. et al.: Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. — New Phytol. 181: 851–859, 2009.CrossRefPubMedGoogle Scholar
  17. Sarkar R.K., Mahata K.R., Singh D.P.: Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. — Acta Physiol. Plant. 35: 2915–2926, 2013.CrossRefGoogle Scholar
  18. Xu C.M., Zhou B., Wang X.D. et al.: Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrate. — Biol. Plantarum 51: 567–570, 2007.CrossRefGoogle Scholar
  19. Zhang L.J., Zeng F.L., Xiao R.: Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves. — Biol. Trace Elem. Res. 91: 243–252, 2003.CrossRefPubMedGoogle Scholar
  20. Zhang Y., Chen L., He J. et al.: Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress. — Biol. Plantarum 54: 164–168, 2010.CrossRefGoogle Scholar
  21. Zheng C.F., Jiang D., Liu F.L. et al.: Effect of salt and waterlogging stresses, chloroplast ATP synthesis, and their combination on leaf photosynthesis, and antioxidant capacity in wheat. — Plant Sci. 176: 575–582, 2009.CrossRefPubMedGoogle Scholar
  22. Zhou J., Fang L., Li X. et al.: Jasmonic acid (JA) acts as a signal molecule in LaCl3-induced Baicalin synthesis in Scutellaria baicalensis seedlings. — Biol. Trace Elem. Res. 148: 392–395, 2012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2016

Authors and Affiliations

  1. 1.Henan Institute of Science and TechnologyXinxiangHenan Province, China
  2. 2.Collaborative Innovation Center of Modern Biological BreedingHenan Province, XinxiangHenan Province, China
  3. 3.Shangluo UniversityShangluoShaanxi Province, China

Personalised recommendations