, Volume 53, Issue 2, pp 288–298 | Cite as

Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage

Original Papers


Water stress usually impairs photosynthesis and plant growth. Acacia tortilis subsp. raddiana is well adapted to dry environments. The aim of the present study was to determine the impact of a progressive decrease in soil water content on photosynthetic-related parameters at the young seedling stage. Drought-induced plant responses occurred according to two types of kinetics. Water potential, stomatal conductance, and transpiration rates were rapidly affected by a decrease in soil water content, while chlorophyll fluorescence-related parameters and chlorophyll concentrations decreased only when soil water content was lower than 40%. The maximal efficiency of PSII photochemistry in the dark-adapted state remained unaffected by the treatment, whatever the stress duration. A. raddiana accumulated high concentrations of soluble sugars in relation to a stress-induced early stimulation of sucrose-phosphate synthase activity, while stimulation of invertase and sucrose synthase led to fructose accumulation only at the end of the stress period. We suggested that sugar accumulation may be involved in osmotic adjustment and protection of stressed tissues. A. raddiana was thus able to protect its photosynthetic machinery under drought conditions and may be considered as a promising species for revegetation of dry areas.

Additional key words

gas exchange growth parameters stomata sugar metabolism water-use efficiency 





dry mass


instantaneous transpiration


density of epidermal pavement cells


electron transfer rate


the minimal fluorescence in the dark-adapted state


the maximal fluorescence in the dark-adapted state


fresh mass


stomatal conductance


leaf area


nonphotochemical quenching


net photosynthesis


photochemical quenching


relative water content


stomatal density


stomatal index


specific leaf area




sucrose synthase


soil water content


water-use efficiency


shoot water potential


shoot osmotic potential


actual PSII efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ait Said S., Torre F., Derridi A. et al.: Gender, Mediterranean drought, and seasonality: photosystem II photochemistry in Pistacia lentiscus. — Photosynthetica 51: 552–564, 2013.CrossRefGoogle Scholar
  2. Akinnifesi F.K., Rowe E.C., Livesley S.J. et al.: Tree root architecture. — In: Van Noordwijk M., Cadisch G., Ong C.K. (ed.): Below-ground Interactions in Tropical Agroecosystems. Concept and Models with Multiple Plant Components. Pp. 61–81. CABI Publishing, London 2004.CrossRefGoogle Scholar
  3. Andersen G.L., Krzywinski K.: Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. — BMC Ecology 7: doi: 10.1186/1472-6785-7-4, 2007.Google Scholar
  4. Barbieri G., Valone S., Orsini F. et al.: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). — J. Plant Physiol. 169: 1737–1746, 2012.CrossRefPubMedGoogle Scholar
  5. Barrs H.D., Weatherley P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves — Aust. J. Biol. Sci. 24: 519–570, 1962.Google Scholar
  6. Bensaïd S.: [The genus Acacia Miller.] — Ann. Inst. Natl. Agron. 21: 547–550, 1988. [In French]Google Scholar
  7. Bensaïd S.: [Germination under laboratory and natural environment conditions and growth in minirhizotron of Acacia raddiana Savi.] — In: Riedaker A, Dreyer E. (ed.): Tree and Shrub Physiology in Arid and Semi-arid Zones. Pp. 405–412. John Libbey Eurotext, Paris 1991. [In French]Google Scholar
  8. Bensaid S., Ait Mohand L., Echaib B.: Spatiotemporal evolution of Acacia tortilis (Forssk.) Hayne raddiana (Savi) Brenan populations in Ougarta Mountains (North Sahara). — Sécheresse 7: 173–178, 1996. [In French]Google Scholar
  9. Bradford M.M.: A rapid and sensitive method for determining microgram quantities of protein using the principle of proteindye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  10. Chen W., Feng W., Guo D. et al.: Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis and osmotic adjustment of cotton plants. — Photosynthetica 49: 417–425, 2011.CrossRefGoogle Scholar
  11. Delpérée C., Kinet J.M., Lutts S.: Low irradiance modifies the effect of water stress on survival and growth-related parameters during the early developmental stages of buckwheat (Fagopyrum esculentum). — Physiol. Plantarum 119: 211–220, 2003.CrossRefGoogle Scholar
  12. Flores J., Jurado E.: Are nurse-protégé interactions more common among plants from arid environments? — J. Veg. Sci. 14: 911–916, 2003.CrossRefGoogle Scholar
  13. Gimeno T.E., Sommerville K.E., Valladares F., Atkin O.K.: Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: insights from two contrasting Acacia species. — Funct. Plant Biol. 37: 323–333, 2010.CrossRefGoogle Scholar
  14. Grego S., Moscatelli M.C., Di Mattia E. et al.: [Rhizosphere biochemical activities of Acacia raddiana in North and South Sahara.] — In: Grouzis M., Le Floc’h, E. (ed.): A Tree in the Desert, Acacia raddiana. Pp. 231–247. Éditeurs Scientifiques IRD, Paris 2003. [In French]Google Scholar
  15. Grouzis M., Akpo E. L.: [Influence of Acacia raddiana on structure and functions of herbal zone in Senegalese Ferlo.] — In: Grouzis M., Le Floc’h, E. (ed.): A Tree in the Desert, Acacia raddiana. Pp. 249–262. Editeurs Scientifiques IRD, Paris 2003. [In French]Google Scholar
  16. Grouzis M., Le Floc’h, E.: A Tree in the Desert, Acacia raddiana. Éditeurs Scientifiques IRD, Paris 2003. [In French]Google Scholar
  17. Huber J.L., Hite D.R.C., Outlaw W.H., Huber S.C.: Inactivation of highly activated spinach leaf sucrose phosphate synthase by dephosphorylation. — Plant Physiol. 95: 291–297, 1991.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Jaouadi W., Hamrouni L., Souayeh N., Khouja M.L.: [Study of the germination of Acacia tortilis under various abiotic constraints.] — Biotechnol. Agron. Soc. Environ. 14: 643–652, 2010. [In French]Google Scholar
  19. Kennenni L.: Geography and phytosociology of Acacia tortilis in the Sudan. — Afr. J. Ecol. 29: 1–10, 1991.CrossRefGoogle Scholar
  20. King S.P., Lunn J.E., Furbank R.T.: Carbohydrate content and enzyme metabolism in developing canola siliques. — Plant Physiol. 114: 153–160, 1997.PubMedCentralPubMedGoogle Scholar
  21. Lassouane N., Aïd F., Lutts S.: Water stress impact on young seedling growth of Acacia arabica. — Acta Physiol. Plant. 35: 2157–2169, 2013.CrossRefGoogle Scholar
  22. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Method. Enzymol. 148: 350–382, 1987.Google Scholar
  23. Maxwell K., Johnson G.N.: Chlorophyll fluorescence — A practical guide — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  24. McCready R.M., Guggolz J., Silviera V., Owens H.S.: Determination of starch and amylose in vegetables. — Anal. Chem. 22: 1156–1158, 1950.CrossRefGoogle Scholar
  25. Munzbergová Z., Ward D.: Acacia trees as keystone species in Negev desert ecosystems. — J. Veg. Sci. 13: 227–236, 2002.Google Scholar
  26. Noumi Z., Abdallah F., Torre F. et al.: Impact of Acacia tortilis ssp. raddiana tree on wheat and barley yield in the south of Tunisia. — Acta Oecol. 37: 117–123, 2011.CrossRefGoogle Scholar
  27. Noureddine N.E., Amrani S., Aïd F.: [Symbiotic status and rhizobial strains associated to Acacia tortilis subsp. raddiana (Acacia raddiana s.s.), a Mimosoideae from desert regions of Algeria.] — Botany 88: 39–53, 2010. [In French]CrossRefGoogle Scholar
  28. Novriyanti E., Watanabe M., Makoto K. et al.: Photosynthetic nitrogen- and water-use efficiency of acacia and eucalypt seedlings as afforestation species. — Photosynthetica 50: 273–281, 2012.CrossRefGoogle Scholar
  29. Orsini F., Alnayef M., Bona S. et al.: Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. — Environ. Exp. Bot. 81: 1–10, 2012.CrossRefGoogle Scholar
  30. Otieno D.O., Schmidt M.W.T., Adiku S., Tenhunen J.: Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. — Tree Physiol. 25: 361–371, 2005.CrossRefPubMedGoogle Scholar
  31. Vandoorne B., Mathieu A.S., Van den Ende W. et al.: Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. — J. Exp. Bot. 63: 4359–4373, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Vidanarachchi J.K., Iji P.A., Mikkelsen L.L. et al.: Isolation and characterization of water-soluble prebiotic compounds from Australian and New Zealand plants. — Carbohyd. Polym. 77: 670–676, 2009.CrossRefGoogle Scholar
  33. Warren C.R., Aranda I., Cano F.J.: Response to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. — Plant Cell Environ. 34: 1609–1629, 2011.CrossRefPubMedGoogle Scholar
  34. Xu S.M., Liu L.X., Woo K.C., Wang D.L.: Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. — Photosynthetica 45: 348–354, 2007.CrossRefGoogle Scholar
  35. Xu Z., Zhou G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. — J. Exp. Bot. 59: 3317–3325, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Yemm E.W., Willis J.: The estimation of carbohydrates in plant extracts by anthrone. — J. Biochem. 57: 508–514, 1954.Google Scholar
  37. Yu H., Ong B.L.: The effect of phyllode temperature on gas exchange and chlorophyll fluorescence of Acacia mangium. — Photosynthetica 40: 635–639, 2002.CrossRefGoogle Scholar
  38. Zhu G.Y., Kinet J.M., Lutts S.: Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I. Physiological behavior during vegetative growth. — Euphytica 121: 251–263, 2001.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2015

Authors and Affiliations

  1. 1.Département de Biologie, Faculté des Sciences de la Nature et de la VieUniversité Blida 1BlidaAlgeria
  2. 2.Groupe de Recherche en Physiologie Végétale, Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Equipe de Physiologie Végétale, LBPO, FSBUniversité des Sciences et de la Technologie Houari BoumedieneBab Ezzouar-AlgiersAlgeria

Personalised recommendations