, Volume 53, Issue 1, pp 35–46 | Cite as

Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity

  • R. Catoni
  • M. U. Granata
  • F. Sartori
  • L. Varone
  • L. Gratani
Original Papers


Morphological, anatomical, and physiological leaf traits of Corylus avellana plants growing in different light conditions within the natural reserve “Siro Negri” (Italy) were analyzed. The results highlighted the capability of C. avellana to grow both in sun and shade conditions throughout several adaptations at leaf level. In particular, the more than 100% higher specific leaf area in shade is associated to a 44% lower palisade to spongy parenchyma thickness ratio compared with that in sun. Moreover, the chlorophyll (Chl) a to Chl b ratio decreased in response to the 97% decrease in photosynthetic photon flux density. The results highlighted the decrease in the ratio of Chl to carotenoid content, the maximum PSII photochemical efficiency, and the actual PSII photochemical efficiency (ΦPSII) associated with the increase in the ratio of photorespiration to net photosynthesis (P N) in sun. Chl a/b ratio was the most significant variable explaining P N variations in shade. In sun, P N was most influenced by the ratio between the fraction of electron transport rate (ETR) used for CO2 assimilation and ETR used for photorespiration, by ΦPSII, nitrogen content per leaf area, and by total Chl content per leaf area. The high phenotypic plasticity of C. avellana (PI = 0.33) shows its responsiveness to light variations. In particular, a greater plasticity of morphological (PIm = 0.41) than of physiological (PIp = 0.36) and anatomical traits (PIa = 0.24) attests to the shade tolerance of the species.

Additional key words

leaf area leaf respiration leaf thickness photorespiration 



soil organic carbon content


ratio between carbon and nitrogen content




carotenoid content


substomatal CO2 concentration


dry mass


transpiration rate


electron transport rate


fraction of ETR used for CO2 assimilation


fraction of ETR used for photorespiration


minimal fluorescence yield of dark-adapted state


minimal fluorescence yield of the light-adapted state


maximal fluorescence yield of the dark-adapted state


maximal fluorescence yield of the light-adapted state


steady-state fluorescence yield


maximal quantum yield of PSII photochemistry


mesophyll conductance


stomatal conductance


leaf area


total leaf thickness


total soil nitrogen content


leaf nitrogen content


mean plasticity index


anatomical plasticity index


morphological plasticity index


physiological plasticity index


net photosynthetic rate


photosynthetic nitrogen use efficiency


photorespiration rates


respiration rate


relative air humidity


specific leaf area


soil organic matter content


soil water content


air temperature


leaf temperature


mean air temperature


mean maximum air temperature


mean minimum air temperature


effective quantum yield of PSII photochemistry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly D.D., Dudley S.A., Sultan S.E. et al.: The evolution of plant ecophysiological traits: recent advances and future directions. — BioScience 50: 979–995, 2000.CrossRefGoogle Scholar
  2. Adiloglu A., Adiloglu S.: An investigation on nutritional status of hazelnut (Corylus avellana L.) grown in acid soils of Turkey. — Arch. Agron. Soil Sci. 50: 617–622, 2004.CrossRefGoogle Scholar
  3. Amthor J.S.: The McCree-de Wit-Penning de Vries Thornley respiration paradigms: 30 years later. — Ann. Bot-London 86: 1–20, 2000.CrossRefGoogle Scholar
  4. Asada K.: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Phys. 50: 601–639, 1999.CrossRefGoogle Scholar
  5. Atkin O.K., Evans J.R., Ball M.C., Siebke K.: Relationships between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. — Aust. J. Plant Physiol. 25: 437–443, 1998.CrossRefGoogle Scholar
  6. Bassil N.V., Botta R., Mehlenbacher S.A.: Microsatellite markers in hazelnut: isolation, characterization, and crossspecies amplification. — J. Am. Soc. Hortic. Sci. 130: 543–549, 2005.Google Scholar
  7. Bailey S., Horton P., Walters R.G.: Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. — Planta 218: 793–802, 2004.CrossRefPubMedGoogle Scholar
  8. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. — Plant Physiol. 130: 1992–1998, 2002.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence at 77k among vascular plants free-air carbon dioxide enrichment affect photochemical of diverse origins. — Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  10. Björkman O., Demmig-Adams B.: Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. — In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp 17–47. Springer-Verlag, Berlin 1994.Google Scholar
  11. Boccacci P., Botta R., Rovira M.: Genetic diversity of hazelnut (Corylus avellana L.) germplasm in northeastern Spain. — HortScience 43: 667–672, 2008.Google Scholar
  12. Cai Z.Q., Slot M., Fan Z.X.: Leaf development and photosynthetic properties of three tropical tree species with delayed greening. — Photosynthetica 43: 91–98, 2005.CrossRefGoogle Scholar
  13. Castagneri D., Garbarino M., Nola P.: Host preference and growth patterns of ivy (Hedera helix L.) in a temperate alluvial forest. — Plant Ecol. 214: 1–9, 2013.CrossRefGoogle Scholar
  14. Catoni R., Gratani L., Varone L.: Physiological, morphological and anatomical trait variations between winter and summer leaves of Cistus species. — Flora 207: 442–449, 2012.CrossRefGoogle Scholar
  15. Chabot B.F., Chabot J.F.: Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. — Oecologia 26: 363–377, 1977.CrossRefGoogle Scholar
  16. de Lucia E.H., Whitehead D., Clearwater M.J.: The relative limitation of photosynthesis by mesophyll conductance in cooccurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum. — Funct. Plant Biol. 30: 1197–1204, 2003.CrossRefGoogle Scholar
  17. Demmig-Adams B., Adams W.W. III.: Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plants species. — Planta 198: 460–470, 1996.CrossRefGoogle Scholar
  18. Demmig-Adams B., Adams W.W. III, Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plantarum 98: 253–264, 1996.CrossRefGoogle Scholar
  19. Dorn L.A., Pyle E.H., Schmitt J.: Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. — Evolution 54: 1982–1994, 2000.CrossRefPubMedGoogle Scholar
  20. Duan B., Lü Y., Yin C., Li C.: Morphological and physiological plasticity of woody plant in response to high light and low light. — Chin. J. Appl. Environ. Biol. 11: 238–245, 2005.Google Scholar
  21. Epron D., Godard D., Cornic G., Genty B.: Limitations of net CO2 assimilation rate by internal reistances to CO, transfer in leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). — Plant Cell Environ. 18: 43–51, 1995.CrossRefGoogle Scholar
  22. Evans J.R., Poorter H.: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. — Plant Cell Environ. 24: 755–767, 2001.CrossRefGoogle Scholar
  23. FAO Production Yearbook: 2011.
  24. FAOSTAT: Food and Agricultural Organization of the United Nations. Production, Crops. 2012.
  25. FAOSTAT: Agriculture Data. 2013.
  26. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  27. Givnish T.J.: Adaptation to sun and shade: A whole plant perspective. — Aust. J. Plant Physiol. 15: 63–92, 1988.CrossRefGoogle Scholar
  28. Grassi G., Magnani F.: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. — Plant Cell Environ. 28: 834–849, 2005.CrossRefGoogle Scholar
  29. Gratani L., Foti I.: Estimating forest structure and shade tolerance of the species in a mixed deciduous broad-leaved forest in Abruzzo, Italy. — Ann. Bot. Fenn. 35: 75–83, 1998.Google Scholar
  30. Gratani L., Meneghini M., Pesoli P., Crescente M.F.: Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. — Trees 17: 515–521, 2003.CrossRefGoogle Scholar
  31. Hampson C.R., Azarenko A.N., Potter J.R.: Photosynthetic rate, flowering, and yield component alteration in hazelnut in response to different light environments. — J. Amer. Soc. Hort. Sci. 121: 1103–1111, 1996.Google Scholar
  32. Harley P.C., Loreto F., di Marco G., Sharkey T.D.: Theoretical consideration when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. — Plant Physiol. 98: 1429–1436, 1992.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Herr-Turoff A., Zedler J.B.: Does morphological plasticity of the Phalaris arundinacea canopy increase invasiveness? — Plant Ecol. 193: 265–277, 2007.CrossRefGoogle Scholar
  34. Holm G.: Chlorophyll mutations in barley. — Acta Agr. Scand. 4: 457–471, 1954.CrossRefGoogle Scholar
  35. Huang D., Wu L., Chen J.R., Dong L.: Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. — Photosynthetica 49: 611–618, 2011.CrossRefGoogle Scholar
  36. Iglesias-Prieto R., Trench R.K.: Acclimation and adaptation to irradiance in symbiotic dino flagellates. II. Response of chlorophyll-protein complexes to different photon-flux densities. — Mar. Biol. 130: 23–33, 1997.CrossRefGoogle Scholar
  37. Johnson G.N., Young A.J., Scholes J.D., Horton P.: The dissipation of excess excitation energy in British plant species. — Plant Cell Environ. 16: 673–679, 1993.CrossRefGoogle Scholar
  38. Kasapligil B.: A bibliography on Corylus (Betulaceae) with annotations. — Annu. Rep. North. Nut. Growers Assoc. 63: 107–162, 1972.Google Scholar
  39. Koike T., Kitao M., Maruyama Y. et al.: Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. — Tree Physiol. 21: 951–958, 2001.CrossRefPubMedGoogle Scholar
  40. Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. — Physiol. Plantarum 86: 180–187, 1992.CrossRefGoogle Scholar
  41. Kull O., Niinemets Ü.: Variations in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. — Tree Physiol. 12: 311–318, 1993.CrossRefPubMedGoogle Scholar
  42. Lam E., Oritz W., Mayfield S., Malkin R.: Isolation and characterization of a light-harvesting chlorophyll a/b protein complex associated with photosystem I. — Plant Physiol. 74: 650–655, 1984.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Larcher W.: Physiological Plant Ecology. 4th ed. Pp. 514. Springer, Berlin, 2003.CrossRefGoogle Scholar
  44. Loveys B.R., Scheurwater I., Pons T.L. et al.: Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. — Plant Cell Environ. 25: 975–988, 2002.CrossRefGoogle Scholar
  45. Maclachlan S., Zalik S.: Plastid structure, chlorophyll concentration, and free aminoacid composition of a chlorophyll mutant of barley. — Can. J. Bot. 41: 1053–1062, 1963.CrossRefGoogle Scholar
  46. Matos F.S., Wolfgramm R., Gonçalves F.V. et al.: Phenotypic plasticity in response to light in the coffee tree. — Environ. Exp. Bot. 67: 421–427, 2009.CrossRefGoogle Scholar
  47. Matos F.S., de Oliveria L.R., de Freitas R.G. et al.: Physiological characterization of leaf senescence of Jatropha curcas L. populations. — Biomass Bioenerg. 45: 57–64, 2012.CrossRefGoogle Scholar
  48. Mendes M.M., Gazarini L.C., Rodrigues M.L.: Acclimation of Myrtus communis to contrasting Mediterranean light environments-effects on structure and chemical composition of foliage and plant water relations. — Environ. Exp. Bot. 45: 165–178, 2001.CrossRefPubMedGoogle Scholar
  49. Moraes G.A.B.K., Chaves A.R.M., Martins S.C.V. et al.: Why is it better to produce coffee seedlings in full sunlight than in the shade? A morphophysiological approach. — Photosynthetica 48: 199–207, 2010.CrossRefGoogle Scholar
  50. Motta R., Nola P., Berretti R.: The rise and fall of the black locust (Robinia pseudoacacia L.) in the “Siro Negri” Forest Reserve (Lombardy, Italy): lessons learned and future uncertainties. — Ann. For. Sci. 66: 410–419, 2009.CrossRefGoogle Scholar
  51. Navas M.L., Garnier E.: Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability. — Acta Oecol. 23: 375–383, 2002.CrossRefGoogle Scholar
  52. Niinemets Ü.: Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. — Funct. Ecol. 11: 518–531, 1997.CrossRefGoogle Scholar
  53. Niinemets Ü., Kull O., Tenhunen J.D.: An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. — Tree Physiol. 18: 681–696, 1998.CrossRefPubMedGoogle Scholar
  54. Niinemets Ü., Valladares F.: Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. — Plant Biol. 6: 254–268, 2004.CrossRefPubMedGoogle Scholar
  55. Ort D.R., Baker N.R.: A photoprotective role for O2 as an alternative electronic sink in photosynthesis? — Curr. Opin. Plant Biol. 5: 193–98, 2002.CrossRefPubMedGoogle Scholar
  56. Pearcy R.W., Sims D.A.: Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. — In: Roy J., Caldwell M.M., Pearcy R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants. Ecophysiological Processes Above- and Belowground. Physiological Ecology. Pp. 145–174. Academic Press, San Diego 1994.Google Scholar
  57. Percerisa J., Rafecas M., Castellote A.I. et al.: Influence of variety and geographical origin on the lipid fraction of halzenuts (Corylus avellana L.) from Spain: III. Oil stability, tocopherol content and some mineral contents. — Food Chem. 53: 71–74, 1995.Google Scholar
  58. Pershern A.S., Breene W.M., Lulai E.C.: Analysis of factors influencing lipid oxidation in hazelnuts (Corylus sp.). — J. Food Process. Pres. 19: 9–26, 1995.CrossRefGoogle Scholar
  59. Persson H., Widén B., Andersson S., Svensson L.: Allozyme diversity and genetic structure of marginal and central populations of Corylus avellana L. (Betulaceae) in Europe. — Plant Syst. Evol. 244: 157–179, 2004.CrossRefGoogle Scholar
  60. Pignatti S.: [Flora of Italy.] Vol. 1, Pp. 112. Bologna Edagricole, 1982. [In Italian]Google Scholar
  61. Pintado A., Valladares F., Sancho L.G.: Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north- and south-facing populations. — Ann. Bot.-London 80: 345–353, 1997.CrossRefGoogle Scholar
  62. Poorter L., Kwant R., Hernández R. et al.: Leaf optical properties in Venezuelan cloud forest trees. — Tree Physiol. 20: 519–526, 2000.CrossRefPubMedGoogle Scholar
  63. Reich P.B., Kloeppel B.D., Ellsworth D.S., Walters M.B.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. — Oecologia 104: 24–30, 1995.CrossRefGoogle Scholar
  64. Sack L., Melcher P.J., Liu W.H. et al.: How strong is intracanopy leaf plasticity in temperate deciduous trees? — Am. J. Bot. 93: 829–839, 2006.CrossRefPubMedGoogle Scholar
  65. Sartori F.: [Alluvial forests of the lower Ticino valley (Northern Italy)]. — Colloq. Phytosiol. 9: 201–216, 1984. [In French].Google Scholar
  66. Schlichting C.D.: The evolution of phenotypic plasticity in plants. — Annu. Rev. Ecol. Syst. 17: 667–693, 1986.CrossRefGoogle Scholar
  67. Schulze E.D., Küppers M.: Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. — Planta 146: 319–326, 1979.CrossRefPubMedGoogle Scholar
  68. Shahidi F., Alasalvar C., Liyana-Pathirana C.M.: Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. — J. Agric. Food Chem. 55: 1212–1220, 2007.CrossRefPubMedGoogle Scholar
  69. Sims J.R., Haby V.A.: Simplified colorimetric determination of soil organic matter. — Soil Sci. 112: 137–141, 1971.CrossRefGoogle Scholar
  70. Soolanayakanahally R.Y., Guy R.D., Silim S.N. et al.: Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). — Plant Cell Environ. 32: 1821–1832, 2009.CrossRefPubMedGoogle Scholar
  71. Sultan S.E.: Phenotypic plasticity and plant adaptation. — Acta Bot. Neerl. 44: 363–383, 1995.CrossRefGoogle Scholar
  72. Sultan S.E.: Phenotypic plasticity for plant development, function and life history. — Trends Plant Sci. 5: 537–542, 2000.CrossRefPubMedGoogle Scholar
  73. Thiele A., Krause G.H., Winter K.: In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. — Aust. J. Plant Physiol. 25: 189–195, 1998.CrossRefGoogle Scholar
  74. Valentini R., Epron D., de Angelis P. et al.: In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. — Plant Cell Environ. 18: 631–640, 1995.CrossRefGoogle Scholar
  75. Valentini N., Calizzano F., Boccacci P., Botta R.: Investigation on clonal variants within the hazelnut (Corylus avellana L.) cultivar ‘Tonda Gentile delle Langhe’. — Sci. Hortic.-Amsterdam 165: 303–310, 2014.CrossRefGoogle Scholar
  76. Valladares F., Wright S.J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. — Ecology 81: 1925–1936, 2000.CrossRefGoogle Scholar
  77. Valladares F., Chico J.M., Aranda I. et al.: The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. — Trees 16: 395–403, 2002.Google Scholar
  78. Valladares F., Arrieta S., Aranda I. et al.: Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental-Mediterranean sites. — Tree Physiol. 25: 1041–1052, 2005.Google Scholar
  79. Violante P.: [Chemical Methods of Soil Analysis.] Pp. 60. Franco Angeli Editore, Milan 2000. [In Italian]Google Scholar
  80. Walters M.B., Reich P.B.: Are shade tolerance, survival, and growth linked? Light and nitrogen effects on hardwood seedlings. — Ecology 77: 841–853, 1996.CrossRefGoogle Scholar
  81. Walters M.B., Reich P.B.: Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? — New Phytol. 143: 143–154, 1999.CrossRefGoogle Scholar
  82. Whitcher I.N., Wen J.: Phylogeny and biogeography of Corylus (Betulaceae): inference from ITS sequences. — Syst. Bot. 26: 283–298, 2001.Google Scholar
  83. Yamashita N., Ishida A., Kushima H., Tanaka N.: Acclimation to sudden increase in light favouring an invasive over native trees in subtropical islands, Japan. — Oecologia 125: 412–419, 2000.CrossRefGoogle Scholar
  84. Zunzunegui M., Ain-Lhout F., Díaz Barradas M.C. et al.: Physiological, morphological and allocation plasticity of a semi-deciduous shrub. — Acta Oecol. 35: 370–379, 2009.CrossRefGoogle Scholar
  85. Zunzunegui M., Díaz Barradas M.C., Ain-Lhout F. et al.: Seasonal physiological plasticity and recovery capacity after summer stress in Mediterranean scrub communities. — Plant Ecol. 212: 127–142, 2011.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2015

Authors and Affiliations

  • R. Catoni
    • 1
  • M. U. Granata
    • 2
  • F. Sartori
    • 2
  • L. Varone
    • 1
  • L. Gratani
    • 1
  1. 1.Department of Environmental BiologySapienza University of RomeRomeItaly
  2. 2.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly

Personalised recommendations