, Volume 52, Issue 1, pp 124–133 | Cite as

Photosynthetic response of poikilochlorophyllous desiccation-tolerant Pleurostima purpurea (Velloziaceae) to dehydration and rehydration

  • S. T. Aidar
  • S. T. Meirelles
  • R. F. Oliveira
  • A. R. M. Chaves
  • P. I. Fernandes-Júnior
Original Paper


The poikilochorophyllous, desiccation-tolerant (PDT) angiosperm, Pleurostima purpurea, normally occurs in less exposed rock faces and slightly shady sites. Our aim was to evaluate the light susceptibility of the photosynthetic apparatus during dehydration-rehydration cycle in P. purpurea. In a controlled environment, the potted plants were subjected to water deficit under two different photosynthetic photon flux densities [PPFD, 100 and 400 μmol(photon) m−2 s−1]. In the higher PPFD, net photosynthetic rate (P N) become undetectable after stomata closure but photochemical efficiency of photosystem II, electron transport rate, and photochemical quenching coefficient were maintained relatively high, despite a partial decrease. The photochemical activity was inhibited only after the complete loss of chlorophylls, when leaf relative water content dropped below 72% and total carotenoids reached maximal accumulation. Nonphotochemical energy dissipation increased earlier in response to dehydration under higher PPFD. P N and photochemical activity were fully recovered after rehydration under both light treatments. Our results suggested that the natural occurrence of P. purpurea should not be restricted by the light intensity during the complete desiccation-rehydration cycles.

Additional key words

chlorophyll fluorescence gas exchange photoprotective mechanisms vegetative desiccation tolerance 



adenosine triphosphate






carbon dioxide


days of deficit


days of rehydration


desiccation tolerant




electron transport rate through the PSII


maximum fluorescence of the dark-adapted sample


maximum fluorescence of the light-adapted sample


steady fluorescence


maximum photochemical efficiency of PSII


intrinsic photochemical efficiency of PSII


minimal fluorescence of the darkadapted sample


minimal fluorescence of the light-adapted sample


stomatal conductance


homoiochorophyllous desiccation tolerant


hours of rehydration


PPFD of 100 μmol m−2 s−1


PPFD of 400 μmol m−2 s−1


infrared gas analyzer


leaf chamber fluorometer


Stern-Volmer nonphotochemical quenching


superoxide radical


net photosynthetic rate


photorespiratory carbon oxidation


poikilochorophyllous desiccation tolerant


photosynthetic photon flux density




polyvinyl chloride


nonphotochemical quenching coefficient


photochemical quenching coefficient


reactive oxygen species


ribulose-1,5-bisphosphate carboxylase/oxygenase




relative water content


standard deviation

x + c

xanthophylls and β-carotenes


actual photochemical efficiency of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aidar, S.T., Meirelles, S.T., Pocius, O., et al.: Desiccation tolerance in Pleurostima purpurea (Velloziaceae). — Plant Growth Regul. 62: 193–202, 2010.CrossRefGoogle Scholar
  2. Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. — Photosynth. Res. 25: 173–185, 1990.PubMedCrossRefGoogle Scholar
  3. Cornic, G., Ghashghaie, J., Genty, B., Briantais, J.M.: Leaf photosynthesis is resistant to a mild drought stress. — Photosynthetica 27: 295–309, 1992.Google Scholar
  4. Degl’Innocenti, E., Guidi, L., Stevanovic, B., Navari, F.: CO2 fixation and chlorophyll a fluorescence in leaves of Ramonda serbica during a dehydration-rehydration cycle. — J. Plant Physiol. 165: 723–733, 2008.PubMedCrossRefGoogle Scholar
  5. Dinakar, C., Djilianov, D., Bartels, D.: Photosynthesis in desiccation tolerant plants: Energy metabolism and antioxidative stress defense. — Plant Sci. 182: 29–41, 2012.PubMedCrossRefGoogle Scholar
  6. Endo, T., Asada, K.: Photosystem I and photoprotection: cyclic electron flow and water-water cycle. — In: Demmin-Adams, B., Adams, W.W.III, Matoo, A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation and Environment. Pp. 205-221. Springer, The Netherlands 2002.Google Scholar
  7. Farrant, J.M., Willigen, C.V., Loffell, D.A., Bartsch, S., Whittaker, A.: An investigation into the role of light during desiccation of three angiosperm resurrection plants. — Plant Cell Environ. 26: 1275–1286, 2003.CrossRefGoogle Scholar
  8. Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electrons transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. — Plant Physiol. 116: 571–580, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Gaff, D.F.: Desiccation tolerant plants in South America. — Oecologia 74: 133–136, 1987.CrossRefGoogle Scholar
  10. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching chlorophyll fluorescence. — Biochim. Biophys. Acta. 990: 87–92, 1989.CrossRefGoogle Scholar
  11. Georgieva, K., Lenk, S., Buschmann, C.: Responses to the resurrection plant Haberlea rhodopensis to high irradiance. — Photosynthetica 46: 208–215, 2008.CrossRefGoogle Scholar
  12. Georgieva, K., Szigeti, Z., Sarvari, E., Gaspar, L., Maslenkova, L., Peva, V., Peli, E., Tuba, Z.: Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. — Planta 225: 955–964, 2007.PubMedCrossRefGoogle Scholar
  13. Hambler, D.J.: A poikilohydrous, poikilochlorophyllous angiosperm from Africa. — Nature 191: 1415–1416, 1961.CrossRefGoogle Scholar
  14. Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. — Biochim. Biophys. Acta 376: 105–115, 1975.PubMedCrossRefGoogle Scholar
  15. Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.PubMedCrossRefGoogle Scholar
  16. Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. — Biochem. Soc. Trans. 11: 591–592, 1983.Google Scholar
  17. Medrano, H., Escalona, J.M., Bota, J., Gulias, J., Flexas, J.: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. — Ann. Bot. 89: 895–905, 2002.PubMedCrossRefGoogle Scholar
  18. Meguro, M., Joly, C.A., Bittencourt, M.M.: [Water stress and some aspects of the physiological behaviour in Xerophyta plicata Spreng. — Velloziaceae.] — Bol. Fac. Filos. Cienc. Let. Univ. Sao Paulo Ser. Bot. 5: 27–42, 1977. [In Portuguese]Google Scholar
  19. Meirelles, S.T., Mattos, E.A., Silva, A.C.: Potential desiccation tolerant vascular plants from southeastern Brazil. — Pol. J. Environ. Stud. 6: 17–21, 1997.Google Scholar
  20. Meirelles, S.T., Pivello, V.R., Joly, C.A.: The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. — Environ. Conserv. 26: 10–20, 1999.CrossRefGoogle Scholar
  21. Osmond, C.B.: What is photoinhibition? Some insights from comparisions of shade and sun plants. — In: Baker, N.R., Bowyer, J.R. (eds.): Photoinhibition of Photosynthesis, from Molecular Mechanisms to the Field. 1st ed., Pp. 1–24. Bios Scientific Publishers, Oxford 1994.Google Scholar
  22. Peeva, V., Cornic, G.: Leaf photosynthesis of Haberlea rhodopensis before and during drought. — Environ. Exp. Bot. 65: 310–318, 2009.CrossRefGoogle Scholar
  23. Péli, E.R., Mihailova, G., Petkova, S., Tuba, Z., Georgieva, K.: Differences in physiological adaptation of Haberlea rhodopensis Friv. leaves and roots during dehydration-rehydration cycle. — Acta Physiol. Plant. 34: 947–955, 2012.CrossRefGoogle Scholar
  24. Pérez, P., Rabnecz, G., Laufer, Z., Gutiérrez, D., Tuba, Z., Martínez-Carrasco, R.: Restoration of photosystem II photochemistry and carbon assimilation and related changes in chlorophyll and protein contents during the rehydration of desiccated Xerophyta scabrida leaves. — J. Exp. Bot. 62: 895–905, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Rascio, N., La Rocca, N.: Resurrection plants: the puzzle of surviving extreme vegetative desiccation. — Crit. Rev. Plant Sci. 24: 209–225, 2005.CrossRefGoogle Scholar
  26. Saccardy, K., Pineau, B., Roche, O., Cornic, G.: Photochemical efficiency of photosystem II and xanthophyll cycle components in Zea mays leaves exposed to water stress and high light. — Photosynth. Res. 56: 57–66, 1998.CrossRefGoogle Scholar
  27. Schwab, K.B., Schreiber, U., Heber, U.: Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration. — Planta 177: 217–227, 1989.PubMedCrossRefGoogle Scholar
  28. Sherwin, H.W., Farrant, J.M.: Differences in rehydration of three desiccation-tolerant angiosperm species. — Ann. Bot. 78: 703–710, 1996.CrossRefGoogle Scholar
  29. Sherwin, H.W., Farrant, J.M.: Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. — Plant Growth Regul. 24: 203–210, 1998.CrossRefGoogle Scholar
  30. Smirnoff, N.: Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.CrossRefGoogle Scholar
  31. Tuba, Z., Lichtenthaler, H.K.: Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. — In: Lüttge, U., Beck, E., Bartels, D. (eds.): Plant Desiccation Tolerance. Ecological Studies 215, Pp. 157–183. Springer-Verlag, Berlin — Heidelberg 2011.CrossRefGoogle Scholar
  32. Tuba, Z., Lichtenthaler, H.K., Csintalan, Z., Nagy, Z., Szente, K.: Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz. — Planta 192: 414–420, 1994.CrossRefGoogle Scholar
  33. Tuba, Z., Proctor, M.C.F., Csintalan, Z.: Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. — Plant Growth Regul. 24: 211–217, 1998.CrossRefGoogle Scholar
  34. Tuba, Z., Smirnoff, N., Csintalan, Z., Nagy, Z., Szente, K.: Respiration during slow desiccation of the poikilochlorophyllous desiccation tolerant plant Xerophyta scabrida at present-day CO2 concentrations. — Plant Physiol. Biochem. 35: 381–386, 1997.Google Scholar
  35. Turner, N.C.: Techniques and experimental approaches for the measurement of plant water status. — Plant Soil 58: 339–366, 1981.CrossRefGoogle Scholar
  36. von Caemmerer, S., Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.CrossRefGoogle Scholar
  37. van Kooten, O.V., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. T. Aidar
    • 1
  • S. T. Meirelles
    • 2
  • R. F. Oliveira
    • 3
  • A. R. M. Chaves
    • 1
  • P. I. Fernandes-Júnior
    • 1
  1. 1.Centro de Pesquisa Agropecuária do Trópico SemiáridoEmpresa Brasileira de Pesquisa Agropecuária — EmbrapaPetrolina, PEBrazil
  2. 2.Departamento de Ecologia Geral, Instituto de BiociênciasUniversidade de São PauloSão Paulo, SPBrazil
  3. 3.Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de QueirozUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations