Advertisement

Photosynthetica

, Volume 51, Issue 2, pp 259–266 | Cite as

Photosynthetic performance of Anabaena variabilis PCC 7937 under simulated solar radiation

  • S. P. Singh
  • R. P. Rastogi
  • R. P. Sinha
  • D. -P. Häder
Article

Abstract

In vivo chlorophyll fluorescence analysis reflecting the photosystem II functionality was investigated in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation in a combination with various cut-off filters (WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400) to assess the effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A), and ultraviolet-B (UV-B) radiations on photosynthesis. The photosynthetic activity (PA) was severely inhibited immediately after 10 min of exposure to high PAR, UV-A, and UV-B radiations compared with low PAR grown control samples. After 1 h of exposure, PA of 17.5 ± 2.9% was detected in the high PAR exposed samples compared with the control, while only a trace or no PA was observed in the presence of ultraviolet radiation (UVR). A recovery of PA was recorded after 2 h of the exposure, which continued for next 4, 8, 12, and 24 h. After 24 h of the exposure, PA of 57.5 ± 1.9%, 36.1 ± 11.7%, 23.5 ± 3.3%, 22.3 ± 5.2%, 20.8 ± 6.7%, 13.2 ± 6.6%, and 21.6 ± 9.5% was observed compared with the control sample in 400, 345, 335, 320, 305, 295, and 280 nm cut-off filters-covered samples, respectively. The relative electron transport rate, measured after 24 h exposure, showed also a disturbance in electron transfer between the two photosystems under the high PAR and UVR treatments relative to the control samples, suggesting the inhibition of photosynthesis. This study suggests that both high PAR and UVR inhibited the photosynthetic performance of A. variabilis PCC 7937 by damaging the photosynthetic apparatus, however, photoprotective mechanisms evolved by the organism allowed an immediate repair of ecologically important machinery, and enabled its survival.

Additional key words

cut-off filters cyanobacteria effective quantum yield of PSII pulse amplitude modulated fluorometer ultraviolet-B radiation 

Abbreviations

Car

carotenoids

Chl

chlorophyll

Fm

maximal fluorescence yield of the light-adapted state

Ft

temporary fluorescence

MAA

mycosporine-like amino acid

PA

photosynthetic activity

PAR

photosynthetically active radiation

PBS

phycobilisome

PS

photosystem

rETR

relative electron transport rate

ROS

reactive oxygen species

UVR

ultraviolet radiation

ΦPSII

effective quantum yield of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, E., Lohscheider, J., Šetlikova, E. et al.: Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level. — New Phytol. 185: 173–188, 2010.PubMedCrossRefGoogle Scholar
  2. Bhandari, R., Sharma, P.K.: High-light-induced changes on photosynthesis, pigments, sugars, lipids and antioxidant enzymes in freshwater (Nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria. — Photochem. Photobiol. 82: 702–710, 2006.PubMedCrossRefGoogle Scholar
  3. Brown, A.M.: A new software for carrying out one-way ANOVA post hoc tests. — Comput. Methods Prog. Biomed. 79: 89–95, 2005.CrossRefGoogle Scholar
  4. Campbell, D., Eriksson, M.J., Öquist, G. et al.: The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. — Proc. Natl. Acad. Sci. USA 95: 364–369, 1998.PubMedCrossRefGoogle Scholar
  5. Cockell, C.S., Rettberg, P., Rabbow, E., Olsson-Francis, K.: Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. — ISME J. 5: 1671–1682, 2011.PubMedCrossRefGoogle Scholar
  6. Ferroni, L., Klisch, M., Pancaldi, S., Häder, D.-P.: Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme. — Mar. Drugs 8: 106–121, 2010.PubMedCrossRefGoogle Scholar
  7. Fischer, W.F.: Life before the rise of oxygen. — Nature 455: 1051–1052, 2008.PubMedCrossRefGoogle Scholar
  8. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  9. Gorbunov, M.Y., Kuzminov, F.I., Fadeev, V.V. et al.: A kinetic model of non-photochemical quenching in cyanobacteria. — Biochim. Biophys. Acta 1807: 1591–1599, 2011.PubMedCrossRefGoogle Scholar
  10. Gutu, A., Kehoe, D.M.: Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. — Mol. Plant 5: 1–13, 2012.PubMedCrossRefGoogle Scholar
  11. Häder, D.-P., Helbling, E.W., Williamson, C.E., Worrest, R.C.: Effects of UV radiation on aquatic ecosystems and interactions with climate change. — Photochem. Photobiol. Sci. 10: 242–260, 2011.PubMedCrossRefGoogle Scholar
  12. Häder, D.-P., Kumar, H.D., Smith, R.C., Worrest, R.C.: Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. — Photochem. Photobiol. Sci. 6: 267–285, 2007.PubMedCrossRefGoogle Scholar
  13. Han, T., Sinha, R.P., Häder, D.-P.: UV-A/blue light-induced reactivation of photosynthesis in UV-B irradiated cyanobacterium, Anabaena sp. — J. Plant Physiol. 158: 1403–1413, 2001.CrossRefGoogle Scholar
  14. Hargreaves, A., Taiwo, F.A., Duggan, O. et al.: Near-ultraviolet photolysis of beta-phenylpyruvic acid generates free radicals and results in DNA damage. — J. Photochem. Photobiol. B: Biol. 89: 110–116, 2007.CrossRefGoogle Scholar
  15. He, Y.-Y., Häder, D.-P.: UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and Nacetyl-L-cysteine. — J. Photochem. Photobiol. B: Biol. 66: 115–124, 2002.CrossRefGoogle Scholar
  16. Huang, L., McCluskey, M.P., Ni, H., LaRossa, R.A.: Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. — J. Bacteriol. 184: 6845–6858, 2002.PubMedCrossRefGoogle Scholar
  17. Kehoe, D.M., Gutu, A.: Responding to color: The regulation of complementary chromatic adaptation. — Annu. Rev. Plant. Biol. 57: 127–150, 2006.PubMedCrossRefGoogle Scholar
  18. Kirk, J.T.O.: Optics of UV-B radiation in natural waters. — Arch. Hydrobiol. Beih. Ergeb. Limnol. 43: 1–16, 1994.Google Scholar
  19. Levine, E., Thiel, T.: UV-inducible DNA repair in the cyanobacteria Anabaena spp. — J. Bacteriol. 169: 3988–3993, 1987.PubMedGoogle Scholar
  20. Los, D.A., Zorina, A., Sinetova, M. et al.: Stress sensors and signal transducers in cyanobacteria. — Sensors 10: 2386–2415, 2010.PubMedCrossRefGoogle Scholar
  21. Manney, G.L., Santee, M.L., Rex, M. et al.: Unprecedented Arctic ozone loss in 2011. — Nature 478: 469–475, 2011.PubMedCrossRefGoogle Scholar
  22. Matsui, K., Nazifi, E., Kunita, S., et al.: Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. — J. Photochem. Photobiol. B: Biol. 105: 81–89, 2011.CrossRefGoogle Scholar
  23. Parmar, A., Singh, N.K., Pandey, A. et al.: Cyanobacteria and microalgae: a positive prospect for biofuels. — Bioresour. Technol. 102: 10163–10172, 2011.PubMedCrossRefGoogle Scholar
  24. Rascher, U., Lakatos, M., Büdel, B., Lüttge, U.: Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. — Eur. J. Phycol. 38: 247–256, 2003.CrossRefGoogle Scholar
  25. Rastogi, R.P., Singh, S.P., Häder, D.-P., Sinha, R.P.: Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. — Biochem. Biophys. Res. Commun. 397: 603–607, 2010.PubMedCrossRefGoogle Scholar
  26. Rastogi, R.P., Singh, S.P., Häder, D.-P., Sinha, R.P.: Ultraviolet-B-induced DNA damage and photorepair in the cyanobacterium Anabaena variabilis PCC 7937. — Environ. Exp. Bot. 74: 280–288, 2011.CrossRefGoogle Scholar
  27. Rastogi, R.P., Sinha, R.P.: Biotechnological and industrial significance of cyanobacterial secondary metabolites. — Biotechnol. Adv. 27: 521–539, 2009.PubMedCrossRefGoogle Scholar
  28. Safferman, R.S., Morris, M.E.: Growth characteristics of the blue-green algal virus LPP-1. — J. Bacteriol. 88: 771–775, 1964.PubMedGoogle Scholar
  29. Sass, L., Spetea, C., Mate, Z., Nagy, F., Vass, I.: Repair of UVB induced damage of Photosystem II via de novo synthesis of the D1 and D2 reaction centre subunits in Synechocystis sp. PCC 6803. — Photosynth. Res. 54: 55–62, 1997.CrossRefGoogle Scholar
  30. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer-Verlag, Berlin 1994.Google Scholar
  31. Singh, S.P., Häder, D.-P., Sinha, R.P.: Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. — Ageing Res. Rev. 9: 79–90, 2010.PubMedCrossRefGoogle Scholar
  32. Singh, S.P., Klisch, M., Sinha, R.P., Häder, D.-P.: Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. — Photochem. Photobiol. 84: 1500–1505, 2008.PubMedCrossRefGoogle Scholar
  33. Sinha, R.P., Häder, D.-P.: Biochemistry of phycobilisome disassembly by ultraviolet-B radiation in cyanobacteria. — Recent Res. Dev. Biochem. 4: 945–955, 2003.Google Scholar
  34. Sinha, R.P., Kumar, A., Tyagi, M.B., Häder, D.-P.: Ultraviolet-B-induced destruction of phycobiliproteins in cyanobacteria. — Physiol. Mol. Biol. Plants 11: 313–319, 2005.Google Scholar
  35. Sinha, R.P., Lebert, M., Kumar, A., Kumar, H.D., Häder, D.-P.: Disintegration of phycobilisomes in a rice field cyanobacterium Nostoc sp. following UV irradiation. — Biochem. Mol. Biol. Int. 37: 697–706, 1995.PubMedGoogle Scholar
  36. Sinha, R.P., Rastogi, R.P., Ambasht, N.K., Häder, D.-P.: Life of wetland cyanobacteria under enhancing solar UV-B radiation. — Proc. Natl. Acad. Sci. India B. 78: 53–65, 2008.Google Scholar
  37. Sinha, R.P., Singh, N., Kumar, A. et al.: Impacts of ultraviolet-B irradiation on nitrogen-fixing cyanobacteria of rice paddy fields. — J. Plant. Physiol. 150: 188–193, 1997.CrossRefGoogle Scholar
  38. Vaishampayan, A., Sinha, R.P., Häder, D.-P. et al.: Cyanobacterial biofertilizers in rice agriculture. — Bot. Rev. 67: 453–516, 2001.CrossRefGoogle Scholar
  39. Wu, H., Gao, K., Villafañe, V.R. et al.: Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. — Appl. Environ. Microbiol. 71: 5004–5013, 2005.PubMedCrossRefGoogle Scholar
  40. Zehr, J.P.: Nitrogen fixation by marine cyanobacteria. — Trends Microbiol. 19: 162–173, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. P. Singh
    • 1
  • R. P. Rastogi
    • 1
    • 2
  • R. P. Sinha
    • 2
  • D. -P. Häder
    • 1
  1. 1.Department of BiologyFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  2. 2.Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations