, Volume 51, Issue 1, pp 55–62 | Cite as

Juvenile tank-bromeliads lacking tanks: do they engage in CAM photosynthesis?

  • J. D. Beltrán
  • E. Lasso
  • S. Madriñán
  • A. Virgo
  • K. Winter


In the epiphytic tillandsioids, Guzmania monostachia, Werauhia sanguinolenta, and Guzmania lingulata (Bromeliaceae), juvenile plants exhibit an atmospheric habit, whereas in adult plants the leaf bases overlap and form water-holding tanks. CO2 gas-exchange measurements of the whole, intact plants and δ13C values of mature leaves demonstrated that C3 photosynthesis was the principal pathway of CO2 assimilation in juveniles and adults of all three species. Nonetheless, irrespective of plant size, all three species were able to display features of facultative CAM when exposed to drought stress. The capacity for CAM was the greatest in G. monostachia, allowing drought-stressed juvenile and adult plants to exhibit net CO2 uptake at night. CAM expression was markedly lower in W. sanguinolenta, and minimal in G. lingulata. In both species, low-level CAM merely sufficed to reduce nocturnal respiratory net loss of CO2. δ13C values were generally less negative in juveniles than in adult plants, probably indicating increased diffusional limitation of CO2 uptake in juveniles.

Additional key words

bromeliads CO2 exchange carbon isotope discrimination crassulacean acid metabolism drought stress Guzmania heteroblasty photosynthesis Werauhia 



crassulacean acid metabolism


dry mass


fresh mass


photon flux density (400–700 nm)


relative humidity


ribulose-1,5-bisphosphate carboxylase/oxygenase


Smithsonian Tropical Research Institute


leaf-air water vapour pressure difference


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abràmoff, M.D., Magelhães, P.J., Ram, S.J.: Image processing with ImageJ. — Biophot. Int. 11: 36–42, 2004.Google Scholar
  2. Adams, W.W.III, Martin, C.E.: Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). — Oecologia 70: 298–304, 1986a.CrossRefGoogle Scholar
  3. Adams, W.W.III, Martin, C.E.: Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). — Amer. J. Bot. 73: 1207–1214, 1986b.CrossRefGoogle Scholar
  4. Benzing, D.H.: Bromeliaceae — Profile of an Adaptive Radiation. — Cambridge Univ. Press, Cambridge 2000.CrossRefGoogle Scholar
  5. Cernusak, L.A., Winter, K., Aranda, J. et al.: Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility. — J. Exp. Bot. 58: 3549–3566, 2007.PubMedCrossRefGoogle Scholar
  6. Cernusak, L.A., Winter, K., Aranda, J., Turner, B.L.: Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ13C and δ18O) of seedlings grown in a tropical environment. — Plant Physiol. 148: 642–659, 2008.PubMedCrossRefGoogle Scholar
  7. Crayn, D.M., Winter, K., Smith, J.A.C.: Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. — Proc. Nat. Acad. Sci. USA 101: 3703–3708, 2004.PubMedCrossRefGoogle Scholar
  8. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537, 1989.CrossRefGoogle Scholar
  9. Givnish, T.J., Barfuss, M.H.J., Van Ee, B. et al.: Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. — Amer. J. Bot. 98: 872–895, 2011.CrossRefGoogle Scholar
  10. Goldstein, G., Andrade, J.L., Nobel, P.S.: Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry conditions. — Aust. J. Plant Physiol. 18: 95–107, 1991.CrossRefGoogle Scholar
  11. Griffiths, H., Lüttge, U., Stimmel, K.H. et al.: Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. — Plant Cell Environ. 9: 385–393, 1986.CrossRefGoogle Scholar
  12. Griffiths, H., Maxwell, K.: In memory of C.S. Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads. — Functional Ecology 13: 15–23, 1999.CrossRefGoogle Scholar
  13. Griffiths, H., Smith, J.A.C.: Photosynthetic pathways in the Bromeliaceae of Trinidad: relation between life forms, habitat preference and occurrence of CAM. — Oecologia 60: 176–184, 1983.CrossRefGoogle Scholar
  14. Holtum, J.A.M., Smith, J.A.C., Neuhaus, H.E.: Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. — Funct. Plant Biol. 32: 429–449, 2005.CrossRefGoogle Scholar
  15. Holtum, J.A.M., Winter, K.: Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. — Aust. J. Plant Physiol. 26: 749–757, 1999.CrossRefGoogle Scholar
  16. Holtum, J.A.M., Winter, K.: Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. — Trees 19: 545–561, 2005.CrossRefGoogle Scholar
  17. Holtum, J.A.M., Winter, K.: Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. — Planta 218: 152–158, 2003.PubMedCrossRefGoogle Scholar
  18. Lüttge, U., Klauke, B., Griffiths, H. et al.: Comparative ecophysiology of CAM and C3 bromeliads. V. Gas exchange and leaf structure of the C3 bromeliad Pitcairnia integrifolia. — Plant Cell Environ. 9: 411–419, 1986b.CrossRefGoogle Scholar
  19. Lüttge, U., Stimmel, K.-H., Smith, J.A.C., Griffiths, H.: Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. — Plant Cell Environ. 9: 377–383, 1986a.CrossRefGoogle Scholar
  20. Maxwell, K.: Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. — Funct. Plant Biol. 29: 679–687, 2002.CrossRefGoogle Scholar
  21. Maxwell, C., Griffiths, H., Borland, A.M. et al.: Photoinhibitory responses of the epiphytic bromelioid Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. — Plant Cell Environ. 15: 37–47, 1992.CrossRefGoogle Scholar
  22. Maxwell, C., Griffiths, H., Young, A.J.: Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. — Funct. Ecol. 8: 745–754, 1994.CrossRefGoogle Scholar
  23. Medina, E., Delgado, M., Troughton, J.H., Medina, J.D.: Physiological ecology of CO2 fixation in Bromeliaceae. — Flora 166: 137–152, 1977.Google Scholar
  24. Medina, E., Minchin, P.: Stratification of δ13C values in Amazonian rain forests. — Oecologia 45: 377–378, 1980.CrossRefGoogle Scholar
  25. Mez, C.: [Physiological studies on Bromeliaceae. I. The water economy of extremely atmospheric tillandsias.] — Jahr. Wiss. Bot. 40: 157–229, 1904. [In German]Google Scholar
  26. Osmond, C.B.: Crassulacean acid metabolism: a curiosity in context. — Annu. Rev. Plant Physiol. 29: 379–414, 1978.CrossRefGoogle Scholar
  27. Pierce, S., Maxwell, K., Griffiths, H., Winter, K.: Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. — Amer. J. Bot. 88: 1371–1389, 2001.CrossRefGoogle Scholar
  28. Pierce, S., Winter, K., Griffiths, H.: Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. — New Phytol. 156: 75–83, 2002.CrossRefGoogle Scholar
  29. R Development Core Team: A language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna 2011.Google Scholar
  30. Schmidt, G., Zotz, G.: Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. — Plant Cell Environ. 24: 101–111, 2001.CrossRefGoogle Scholar
  31. Schmidt, J.E., Kaiser, W.M.: Response of the succulent leaves of Peperomia magnoliaefolia to dehydration: water relations and solute movement in chlorenchyma and hydrenchyma. — Plant Physiol. 83: 190–194, 1987.PubMedCrossRefGoogle Scholar
  32. Smith, J.A.C., Griffiths, H., Bassett, M., Griffiths, N.M.: Daynight changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad. — Oecologia 67: 475–485, 1985.CrossRefGoogle Scholar
  33. Smith, J.A.C., Griffiths, H., Lüttge, U.: Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. — Plant Cell Environ. 9: 359–376, 1986.CrossRefGoogle Scholar
  34. Silvera, K., Santiago, L.S., Winter, K.: Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. — Funct. Plant Biol. 32: 397–407, 2005.CrossRefGoogle Scholar
  35. Tomlinson, P.B.: Monocotyledons — towards an understanding of their morphology and anatomy. — Adv. Bot. Res. 3: 207–292, 1970.CrossRefGoogle Scholar
  36. West-Eberhard, M.J., Smith, J.A.C., Winter, K.: Photosynthesis, reorganized. — Science 332: 311–312, 2011.PubMedCrossRefGoogle Scholar
  37. Winter, K., Aranda, J.E., Holtum, J.A.M.: Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. — Funct. Plant Biol. 32: 381–388, 2005.CrossRefGoogle Scholar
  38. Winter, K., Garcia, M., Holtum, J.A.M.: On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. — J. Exp. Bot. 59: 1829–1840, 2008.PubMedCrossRefGoogle Scholar
  39. Winter, K., Garcia, M., Holtum, J.A.M.: Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. — J. Exp. Bot. 62: 4037–4042, 2011.PubMedCrossRefGoogle Scholar
  40. Winter, K., Holtum, J.A.M.: How closely do the ·13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? — Plant Physiol. 129: 1843–1851, 2002.PubMedCrossRefGoogle Scholar
  41. Winter, K., Holtum, J.A.M.: Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. — Plant Physiol. 143: 98–107, 2007.PubMedCrossRefGoogle Scholar
  42. Winter, K., Holtum, J.A.M.: Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. — Funct. Plant Biol. 38: 576–582, 2011.CrossRefGoogle Scholar
  43. Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. — Ecological Studies, Vol. 114. Springer, Berlin — Heidelberg — New York 1996.Google Scholar
  44. Zotz, G., Enslin, A., Hartung, W., Ziegler, H.: Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanguinolenta, do not concur with the morphological change from atmospheric to tank form. — Plant Cell Environ. 27: 1341–1350, 2004.CrossRefGoogle Scholar
  45. Zotz, G., Harris, G.K., Königer, M., Winter K.: High rates of photosynthesis in the tropical pioneer tree, Ficus insipida Willd. — Flora 190: 265–272, 1995.Google Scholar
  46. Zotz, G., Wilhelm, K., Becker, A.: Heteroblasty—A review. — Bot. Rev. 77: 109–151, 2011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • J. D. Beltrán
    • 1
  • E. Lasso
    • 1
  • S. Madriñán
    • 1
  • A. Virgo
    • 2
  • K. Winter
    • 2
  1. 1.Universidad de los AndesLaboratorio de BotánicaBogotáColombia
  2. 2.Smithsonian Tropical Research InstituteBalboa, AncónRepublic of Panama

Personalised recommendations