Skip to main content

Advertisement

Log in

Ecophysiological responses of Caragana korshinskii Kom. under extreme drought stress: Leaf abscission and stem survives

  • Published:
Photosynthetica

Abstract

Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

DAW:

day after water was withheld

DAR:

day after rehydration

DS:

drought stress

E :

transpiration rate

F0 :

minimum fluorescence of the dark-adapted state

Fm :

maximum fluorescence of the light-adapted state

Fm′:

maximum fluoresence yield of the dark-adapted state

Fs :

steady-state fluoresence

Fv/Fm :

maximum photochemical efficiency of photosystem II

FWC:

field water capacity

g s :

stomatal conductance

NPQ:

nonphotochemical quenching of fluorescence

PPFD:

photosynthetic photon flux density

P N :

net photosynthetic rate

PSII:

photosystem II

RWC:

relative water content

SWC:

soil water content

Tleaf :

leaf temperature

WW:

well watered

WUE:

instantaneous water-use efficiency

ϕPSII :

quantum efficiency of noncyclic electric transport of PSII

References

  • Aganchich, B., Wahbi, S., Loreto, F., Centritto, M.: Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic act ivities in young olive (Olea europaea) saplings. — Tree Physiol. 29: 685–696, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bai, J., Xu, D.H., Kang, H.M., Chen, K., Wang, G.: Photoprotective function of photorespiration in Reaumuria soongorica during different levels of drought stress in natural high irradiance. — Photosynthetica 46: 232–237, 2008.

    Article  Google Scholar 

  • Balaguer, L., Pugnaire, F.I., Martínez-Ferri, E.: Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. — Plant Soil 240: 343–352, 2002.

    Article  CAS  Google Scholar 

  • Boyer, T.S., Wong, S.C., Farquhar, D.: CO2 and water vapour exchange across the leaf cuticle (epidermis) at various water potentials. — Plant Physiol. 114: 185–191, 1997.

    PubMed  CAS  Google Scholar 

  • Chaitanya, K.V., Jutur, P.P., Sundar, D.: Water stress effects on photosynthesis in different mulberry cultivars. — Plant Growth Regul. 40: 75–80, 2003.

    Article  CAS  Google Scholar 

  • Cheng, X.R., Huang, M.B., Shao, M.A., Warrington, D.N.: A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China. — Plant Soil 315: 149–161, 2009.

    Article  CAS  Google Scholar 

  • Comstock, J.P.: Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. — J. Exp. Bot. 53: 195–200, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, K., Farrant, J.M.: Recovery of the resurrection plant Craterostigma wilmsii from desiccation: Protection versus repair. — J. Exp. Bot. 53: 1805–1813, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Croker, J.L., Witte, W.T., Auge, R.M.: Stomatal sensitivity of six temperate, deciduous tree species to non-hydraulic root-to shoot signalling of partial soil drying. — J. Exp. Bot. 49: 761–774, 1998.

    CAS  Google Scholar 

  • Donald, R.: When there is too much light. — Plant Physiol. 125: 29–32, 2001.

    Article  Google Scholar 

  • Fang, X.W., Li, Y.B., Xu, D.H., Yang, X.M., Wang, G.: Activities of starch hydrolytic enzymes and starch mobilization in roots of Caragana korshinskii following aboveground partial shoot removal. — Trees 21: 93–100, 2007.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Ann. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Fleck, I., Hogan, K.P., Llorens, L., Abadía, A., Aranda, X.: Photosynthesis and photoprotection in Quercus ilex resprouts after fire. — Tree Physiol. 18: 607–614, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Gindaba, J., Rozanov, A., Negash, L.: Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. — Forest Ecol. Manag. 201: 119–129, 2004.

    Article  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Guo, W.H., Li, B., Huang, Y.M.: Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedlings. — Acta. Bot. Sin. 45: 1238–1244, 2003.

    Google Scholar 

  • Kitao, M., Lei, T.T., Koike, T., Tobita, H., Maruyama, Y.: Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). — Physiol. Plant. 118: 406–413, 2003.

    Article  CAS  Google Scholar 

  • Lawlor, D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. — Ann. Bot. 89: 871–885, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.B., Zhang, T.G., Li, X.R., Wang, G.: Protective mechanism of desiccation tolerance in Reaumuria Soongorica: Leaf abscission and sucrose accumulation in the stem. — Sci. China. Ser. C-Life Sci. 50: 15–21, 2007.

    Article  CAS  Google Scholar 

  • Lo Gullo, M.A., Salleo, S.: Different strategies of drought resistance in three Mediterranean scierophyllous trees growing in the same environmental conditions. — New Phytol. 108: 267–276, 1988.

    Article  Google Scholar 

  • Ma, C. C., Gao, Y. B., Guo, H. Y., Wang, J. L.: Photosynthesis, transpiration, and water use efficiency of Caragana microphylla, C. intermedia, and C. korshinskii. — Photosynthetica 42: 65–70, 2004.

    Article  CAS  Google Scholar 

  • Mahouachi, J., Socorro, A.R., Talon, M.: Responses of papaya seedling (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. — Plant Soil 281: 137–146, 2006.

    Article  CAS  Google Scholar 

  • Maroco, J.P., Pereira, J.S., Chaves, M.M.: Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. — Aust. J. Plant Physiol. 24: 381–387, 1997.

    Article  Google Scholar 

  • McDowell, N., Pockman, W.T., Allen, C.D. et al..: Mechanisms of plant survival and morta-lity during drought: why do some plants survive while others succumb to drought? — New Phytol. 178: 719–739, 2008.

    Article  PubMed  Google Scholar 

  • Morgan, P.W., Jordan, W.R., Davenport, T.L., Durham, J.I.: Abscission response to moisture stress, auxin transport inhibitors, and ethephon. — Plant Physiol. 59: 710–712, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, E.T., Muller, W.H.: Phenology of the droughtdeciduous shrub Lotus scoparius: climatic controls and adaptive significance. — Ecol. Monogr. 51: 323–341, 1981.

    Article  Google Scholar 

  • Qian, Y.L., Fry, J.D., Upham, W.S.: Rooting and drought avoidance of warm-season turfgrasses and tall fescue in Kansas. — Crop Sci. 37: 699–704, 1997.

    Article  Google Scholar 

  • Schiller, P., Wolf, R., Hartung, W.: A scanning electron microscopical study of hydrated and dehydrated submerged leaves of the aquatic resurrection plant Chamaegigas intrepidus. — Flora 194: 97–102, 1999.

    Google Scholar 

  • Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. — Remote Sens Environ. 81: 337–354, 2002.

    Article  Google Scholar 

  • Song, W.M., Zhou, H.Y., Jia, R. L., Zhao, X., Feng, L., Tan, H.J.: [Response of photosynthesis function and trehalose content of four desert plants to gradual drought stress.] — J. Desert Res. 28: 449–454, 2008. [In Chin.]

    Google Scholar 

  • Tyree, M., Sperry, J.: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. — Plant Physiol. 88: 574–580, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Varela, S.A., Gyenge, J.E., Fernández, M.E., Schlichter, T.: Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. — Trees 24: 443–453, 2010.

    Article  Google Scholar 

  • Wang, X.P., Li, X.R., Kang, E. S.: [Experiment on evapotranspiration of Xerophyte communities in a revegetated desert zone.] — J. Desert Res. 22: 363–367, 2002a. [In Chin.]

    CAS  Google Scholar 

  • Wang, Y.R., Zeng, Y.J., Zhang, B. L.: [Water distribution patterns in different degraded desert grasslands of Reaumuria soongorica.] — Chin J. Appl. Ecol. 13: 962–966, 2002b. [In Chin.]

    Google Scholar 

  • Xia, G.M., Kang, S.Z., Li, W.C., Wang, F., Qu, Y.P.: Diurnal and seasonal variation of stem sap flow for Caragana korshinskii on the arid desert region in Shiyang river basin of Gansu. — Acta Phytoecol Sin. 26: 1187–1193, 2006.

    Google Scholar 

  • Xu, D.H., Bai, J., Li, J.H., Fang, X.W., Wang, G.: Changes of photosynthetic activity and carbohydrate content in resurrection plant Caragana korshinskii during de-hydration and rehydration. — Plant Stress 2: 45–49, 2008.

    CAS  Google Scholar 

  • Xu, D.H., Su, P.X., Zhang, R.Y., Li, H.L., Zhao, L., Wang, G.: Photosynthetic parameters and carbon reserves of a resurrection plant Reaumuria soongorica during de-hydration and rehydration. — Plant Growth Regul. 60: 183–190, 2010.

    Article  CAS  Google Scholar 

  • Zhang, X.S.: Principles and optimal models for development of Maowusu sandy grassland. — Acta Phytoecol Sin. 18: 1–16, 1994.

    Google Scholar 

  • Zhang, Z.S., Li, X.R., Liu, L.C., Jia, R.L., Zhang, J.G., Wang, T.: Distribution, biomass, and dynamics of roots in a revegetated stand of Caragana korshinskii in the Tengger Desert, northwestern China. — J. Plant Res. 122: 109–119, 2009.

    Article  PubMed  Google Scholar 

  • Zheng, Y., Xie, Z., Gao, Y., Jiang, L., Shimizu, H., Tobe, K.: Germination responses of Caragana korshinskii Kom. to light, temperature and water stress. — Ecol. Res. 19: 553–558, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Xu.

Additional information

Acknowledgments: This study was supported by the National Natural Sciences Foundation of China (No. 30900171 and No. 91025026) and China Postdoctoral Science Foundation (No. 20090450186).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D.H., Fang, X.W., Su, P.X. et al. Ecophysiological responses of Caragana korshinskii Kom. under extreme drought stress: Leaf abscission and stem survives. Photosynthetica 50, 541–548 (2012). https://doi.org/10.1007/s11099-012-0060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0060-4

Additional key words

Navigation