, Volume 50, Issue 2, pp 305–316 | Cite as

Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi

  • A. A. Asrar
  • G. M. Abdel-Fattah
  • K. M. Elhindi


The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (Ψw), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant.

Additional key words

arbuscular mycorrhiza flower yield snapdragon water relations water stress 



arbuscular mycorrhizal


arbuscular mycorrhizal fungi


dry mass


dry mass of mycorrhizal plants


dry mass of nonmycorrhizal plants


initial electrical conductivity


final electrical conductivity


flower number


flower fresh mass


flower dry mass


fresh mass


electrolyte leakage




leaf area


leaf number


leaf dry mass


leaf fresh mass


leaf turgid mass


mycorrhizal dependency


relative water content


leaf saturated mass


nonarbuscular mycorrhizal fungi


stem diameter


shoot height


spike numbers






water-use efficiency


water-use efficiency of mycorrhizal plants


water-use efficiency of nonmycorrhizal plants


leaf water potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Fattah, G.M.: Functional activity of VA-mycorrhiza (Glomus mosseae) in the growth and productivity of soybean plants grown in sterilized soil. — Folia Microbiol. 42: 495–502, 1997.CrossRefGoogle Scholar
  2. Abdel-Fattah, G.M.: Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. — Microbiol. Res. 156: 359–367, 2001.PubMedCrossRefGoogle Scholar
  3. Abdel-Fattah, G.M., Asrar, A.A.: Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. — Acta Physiol. Plant. 34: 267–277, 2012.CrossRefGoogle Scholar
  4. Abdel-Fattah, G.M., Migahed, F.F., Ibrahim, A.H.: Interactive effects of endomycorrhizal fungus Glomus etunicatum and phosphorus fertilization on growth and metabolic activities of broad bean plants under drought stress conditions. — Pakist. J. Biol. Sci. 5: 835–841, 2002.CrossRefGoogle Scholar
  5. Aboul-Nasr, A.: Effects of vesicular-arbuscular mycorrhizal on Tagetes erecta and Zinnia elegans. — Mycorrhiza 6: 61–64, 1996.CrossRefGoogle Scholar
  6. Al-Karaki, G.N.: Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. — Mycorrhiza 8: 41–45, 1998.CrossRefGoogle Scholar
  7. Al-Karaki, G.N., Al-Raddad, A.: Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. — Mycorrhiza 7: 83–88, 1997.CrossRefGoogle Scholar
  8. Allen, E.B., Cunningham, G.L.: Effects of vesicular mycorrhiza on Distichlis spicata under three salinity levels. — New Phytol. 93: 227–236, 1983.CrossRefGoogle Scholar
  9. Allen, M.F.: Influence of vesicular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) lag ex Steud. — New Phytol. 91: 191–196, 1982.CrossRefGoogle Scholar
  10. Allen, S.E.: Chemical Analysis of Ecological Materials. 2nd Ed. — Blackwell Sci. Publ., Osney 1989.Google Scholar
  11. Al-Qarawi, A.A.: Efficiency of arbuscular mycorrhizal (AM) fungi for improving growth, root system architecture, nutrient uptake, leaf hydraulic conductance and photosynthetic pigments of maize and pea plants. — J. Environ. Sci. 39: 67–82, 2010.Google Scholar
  12. Asrar, A.A., Elhindi, K.M.: Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. — Saudi J. Biol. Sci. 19: 38–46, 2011.Google Scholar
  13. Auge, R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. — Mycorrhiza 11: 3–42, 2001.CrossRefGoogle Scholar
  14. Auge, R.M., Schekel, K.A., Wample, R.L.: Osmotic adjustment in leaves of VA mycorrhizal rose plants in response to drought stress. — Plant Physiol. 82: 765–770, 1986.PubMedCrossRefGoogle Scholar
  15. Auge, R.M., Schekel, K.A., Wample, R.L.: leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. — Plant Soil 99: 291–302, 1987.CrossRefGoogle Scholar
  16. Auge, R.M., Toler, H.D., Sams, C.E., Nasim, G.: Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. — Mycorrhiza 18: 115–121, 2008.PubMedCrossRefGoogle Scholar
  17. Azcon-Aguilar, C., Barcelo, A., Vidal, M.T., de la Vina, G.: Further studies in the growth and development of microprogated avocado plants. — Agronomie 12: 837–840, 1992.CrossRefGoogle Scholar
  18. Azcón, R., Gomez, M., Tobar, R.: Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus fertilized plants of Lactuca sativa L. — New Phytol. 121: 227–234, 1992.CrossRefGoogle Scholar
  19. Berta, G., Fusconi, A., Trotta, A.: VA mycorrhizal infection and the morphology and function of root systems. — Environ. Exp. Bot. 33: 159–173, 1993.CrossRefGoogle Scholar
  20. Bethlenfalvay, G.J., Brown, M.S., Ames, R.N., Thomas, R.S.: Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. — Physiol. Plant. 72: 565–571, 1988.CrossRefGoogle Scholar
  21. Bryla, D.R., Duniway, J.M.: Growth, phosphorus uptake and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. — New Phytol. 136: 581–590, 1997.CrossRefGoogle Scholar
  22. Bulir, P.: Testing method applied for evaluation of ornamental trees in the Czech Republic. — Hort. Sci. 36: 154–161, 2009.Google Scholar
  23. Chapman, H.D., Pratt, P.F.: Ammonium vandate-molybdate method for determenation of phosphorus. — In: Methods of Analysis for Soils, Plants and Water. 1st Ed. Pp. 184–203. California Univ., California 1961.Google Scholar
  24. Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J., Moore, J., Auge, R.: Mycorrhizal symbiosis and responses of sorghum plants to combined drought and salinity stresses. — J. Plant Physiol. 163: 517–528, 2006.PubMedCrossRefGoogle Scholar
  25. Davies, F.T., Potter, J.R., Linderman, R.G.: Mycorrhiza and repeated drought exposure affect drought reistance and extraradical hyphae of pepper plants independent of plant size and nutrient content. — J. Plant Physiol. 139: 289–294, 1992.CrossRefGoogle Scholar
  26. Davies, F.T., Svenson, S.E., Cole, J.C., Phavaphutanon, L., Duray, S.A., Olalde-Portugal, V., Meier, C.E., Bo, S.H.: Nonnutritional stress acclimation of mycorrhizal woody plants exposed to drought. — Tree Physiol. 16: 985–993, 1996.CrossRefGoogle Scholar
  27. Davies, W.J., Tardieu, F., Trejo, C.L.: How do chemical signals work in plants that grow in drying soil? — Plant Physiol. 104: 309–314, 1994.PubMedGoogle Scholar
  28. De Miranda, J.C.C., Harris, P.J.: The effect of soil phosphorus on the external mycelium growth of arbuscular-mycorrhizal fungi during early stages of mycorrhiza formation. — Plant Soil 166: 271–280, 1994.CrossRefGoogle Scholar
  29. Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.CrossRefGoogle Scholar
  30. Ellis. J.R., Larsen, H.J., Boosalis, M.G.: Drought resistance of wheat plants inoculated with vesicular-arbuscular mycorrhizae. — Plant Soil 86: 369–378, 1985.CrossRefGoogle Scholar
  31. Faber, B.A., Zasoski, R.J., Munns, D.N., Shackel, K.: A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. — Can. J. Bot. 96: 87–94, 1991.CrossRefGoogle Scholar
  32. Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C., Rengel, Z.: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. — Mycorrhiza 12: 185–190, 2002.PubMedCrossRefGoogle Scholar
  33. George, E., Haussler, K., Vetterrlein, D., Gorgus, E., Marschner, H.: Water nutrient translocation by hyphae of Glomus mosseae. — Can. J. Bot. 70: 2130–2137, 1992.CrossRefGoogle Scholar
  34. Giri, B., Kapoor, R., Mukerji, K.G.: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K:Na ratios in root and shoot tissues. — Microbial Ecol. 54: 753–760, 2007.CrossRefGoogle Scholar
  35. Goicoechea, N., Dolezal, K., Antolin, M.C., Sanchez-Diaz, M.: Root cytokinins, acid phosphorus and nodule activity in drought-stressed mycorrhizal or nitrogen-fixing alfalfa plants. — J. Exp. Bot. 47: 683–686, 1996.CrossRefGoogle Scholar
  36. Hanson, A.D., Hitz, W.D.: Metabolic responses of mesophytes to plant water deficits. Annuals review — Plant Physiol. 33: 161–203, 1982.Google Scholar
  37. Hiscox, J.D., Israelstam, G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. — Can. J. Bot. 57: 1332–1234, 1979.CrossRefGoogle Scholar
  38. Hoque, M.D.A., Arima, S.: Evaluation of salt damage through cell membrane stability monitored by electrolyte leakage in water chestnut (Trapa sp.). — Bull. Fac. Agric. Saga Univ. 85: 141–146, 2000.Google Scholar
  39. Ibrahim, H.A., Abdel-Fattah, G.M., Eman, F.M., Abd El-Aziz. M.H., Shohr, A.E.: Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. — Phyton-Ann. Rei Bot. 51: 261–276, 2011.Google Scholar
  40. Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A., Cullu, M.: The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. — Sci. Hort. 121: 1–6, 2009.CrossRefGoogle Scholar
  41. Kaya, C., Higgs, D.: Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. — Sci. Hort. 93: 53–64, 2002.CrossRefGoogle Scholar
  42. Kaya, C., Higgs, D., Kirnak, H., Tas, I.: Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrulus lanatus Thunb.) grown under well-watered and water-stressed conditions. — Plant Soil 254: 287–292, 2003.CrossRefGoogle Scholar
  43. Koide, R., Ellitott, G.: Cost, benefit and efficiency of vesiculararbuscular mycorrhizal symbiosis. — Func. Ecol. 3: 252–255, 1989.Google Scholar
  44. Lee, B.R., Kim, K.Y., Jung, W.J., Avice, J.C., Ourry, A., Kim, T.H.: Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). — J. Exp. Bot. 6: 1271–1279, 2007.CrossRefGoogle Scholar
  45. Levitt, J.: Responses of plants to environmental stress. — In: Levitt, J.: Water, Radiation, Salt and Other Stresses. Vol. II. 2nd Ed., Pp. 3–53, Acad. Press, New York 1980.Google Scholar
  46. Levy, Y., Krikun, J.: Effect of vesicular-arbuscular mycorrhizal on Citrus jambhiri water relations. — New Phytol. 85: 25–31, 1980.CrossRefGoogle Scholar
  47. Li, H.S.: Principles and Techniques of Plant Physiological Biochemical Experiment. — Higher Education Press, Beijing 2000.Google Scholar
  48. Linderman, R.G., Davis, E.: varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. — Sci. Hort. 99: 67–78, 2004.CrossRefGoogle Scholar
  49. Liu, G.H., Nada, K., Honda, C., Kitashiba, H., Wen, X., Pang, X., Moriguchi, T.: Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. — J. Exp. Bot. 57: 2589–2599, 2006.PubMedCrossRefGoogle Scholar
  50. Maggio, A., Reddy, M.P., Joly, R.J.: leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. — Environ. Exp. Bot. 44: 31–38, 2000.PubMedCrossRefGoogle Scholar
  51. Menge, J.A., Johnson, E.L.V., Platt, R.G.: Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. — New Phytol. 81: 553–559, 1978.CrossRefGoogle Scholar
  52. Morte, A., Lovisolo, C., Schubert, A.: Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense — Terfezia claveryi. — Mycorrhiza 10: 115–119, 2000.CrossRefGoogle Scholar
  53. Munns, R., James, R.A., Lauchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. Exp. Bot. 57: 1025–1043, 2006.PubMedCrossRefGoogle Scholar
  54. Nelson, D.W., Sommers, L.E.: Determination of total nitrogen in plant material. — Agron. J. 65: 109–112, 1973.CrossRefGoogle Scholar
  55. Phillips, J.M., Hayman, D.S.: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. — Trans. Brit. Mycol. Soc. 55: 158–161, 1970.CrossRefGoogle Scholar
  56. Porcel, R., Ruiz-Lozano, J.M.: Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. — J. Exp. Bot. 55: 1743–1750, 2004.PubMedCrossRefGoogle Scholar
  57. Raju, P.S., Clark, R.B., Ellis, J.R.: Benefit and cost analysis and phosphorus mycorrhizal fungi colonization with sorghum (Sorghum bicolor) genotypes grown at varied phosphorus levels. — Plant Soil 124: 199–204, 1990.CrossRefGoogle Scholar
  58. Richert, D.H., Sancho, F.O., Ananth, S.: Vesicular-arbuscular endomycorrhizal colonization of wetland plants. — J. Environ. Quality 23: 913–916, 1994.Google Scholar
  59. Ruiz-Lozano, J.M., Azcon, R.: Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. — Physiol. Plant. 95: 472–478, 1995.CrossRefGoogle Scholar
  60. Ruiz-Lozano, J.M., Azcon, R., Gomez, M.: Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. — Appl. Environ. Microbiol. 61: 456–460, 1995.PubMedGoogle Scholar
  61. Sadasivam, S., Manickam, A.: Biochemical methods. 2nd Ed. — Int. Publ. Ltd., New Delhi 1996.Google Scholar
  62. Safir, G.R., Boyer, J.S. Gerdemann, J.W.: Mycorrhizal enhancement of water transport in soybean. — Science 172: 581–583, 1971.PubMedCrossRefGoogle Scholar
  63. Sanchez, F.J., Manzanares, M., Andres, E.F., Tenorio, J.L., Averbe, L.: Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. — Field Crops Res. 59: 225–235, 1998.CrossRefGoogle Scholar
  64. Stevens, K.J., Wall, C.B., Jansen, J.A.: Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. — Mycorrhiza 21: 279–288, 2011.PubMedCrossRefGoogle Scholar
  65. Subramanian, K.S., Charest, C.: Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. — Mycorrhiza 5: 273–278, 1995.Google Scholar
  66. Subramanian, K.S., Charest, C.: Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. — Physiol. Plant. 102: 285–296, 1998.CrossRefGoogle Scholar
  67. Subramanian, K.S., Santhanakrishnan, P., Balasubramanian, P.: Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. — Sci. Hort. 107: 245–253, 2006.CrossRefGoogle Scholar
  68. Tang, M., Chen, H., Huang, J.C., Tian, Z.Q.: AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. — Soil Biol. Biochem. 41: 936–940, 2009.CrossRefGoogle Scholar
  69. Tarafdar, J.C.: Role of a VA mycorrhizal fungus on growth and water relations in wheat in presence of organic and inorganic phosphates. — J. Ind. Soc. Soil Sci. 43: 197–203, 1995.Google Scholar
  70. Tobar, R.M., Azcon, R., Barea J.M.: Improved nitrogen uptake and transport from N15-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. — New Phytol. 126: 119–122, 1994.CrossRefGoogle Scholar
  71. Trouvelot, A., Kough, J., Gianinazzi-Pearson, V.: Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. — In: Gianinazzi-Pearson, V., Gianinazzi, S. (ed.): Physiological and Genetical Aspects of Mycorrhizae. Pp. 217–221. INRA Press, Paris 1986.Google Scholar
  72. Wu, Q., Xia, R.X.: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. — J. Plant physiol. 163: 417–425, 2006.PubMedCrossRefGoogle Scholar
  73. Wu, Q.S., Xia, R.X., Zou, Y.N.: Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. — Eur. J. Soil Biol. 44: 122–128, 2008.CrossRefGoogle Scholar
  74. Zandavalli, R.B., Dillenburg, L.R., de Souza, P.V.: Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. — Appl. Soil Ecology 25: 245–255, 2004.CrossRefGoogle Scholar
  75. Zhang, Q., Xu, L., Tang, J., Bai, M., Chen, X.: Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment. — Mycorrhiza 21: 269–277, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. A. Asrar
    • 1
  • G. M. Abdel-Fattah
    • 1
  • K. M. Elhindi
    • 1
  1. 1.Plant production Department, College of Food and Agriculture SciencesKing Saud University, RiyadhRiyadhSaudi Arabia

Personalised recommendations