Advertisement

Photosynthetica

, Volume 48, Issue 4, pp 623–629 | Cite as

Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity

  • N. Sui
  • M. Li
  • K. Li
  • J. Song
  • B. -S. Wang
Original Papers

Abstract

In order to examine the possible role of unsaturated fatty acids in photosynthesis of halophytes under high salinity, the effect of salinity on plant growth, chlorophyll (Chl) content, photochemical efficiency of PSII, membrane lipid content and fatty acids composition of a C3 euhalophyte Suaeda salsa L. was investigated. Salt stress induced a slight increase of the maximal photochemical efficiency of PSII (Fv/Fm), actual PSII efficiency (ΦPSII), Chl a content and Chl a/b ratio. The unsaturated fatty acid content also increased under salt stress. The proportion of MGDG, DGDG, SQDG, and PC decreased, while the proportion of PG increased from 10.9% to 26.9% under salt stress. These results suggest that S. salsa displays high resistance to photoinhibition under salt stress and that increased concentration of unsaturated fatty acids in membrane lipids of S. salsa enhances the tolerance of photosystem II to salt stress.

Additional key words

chlorophyll membrane lipid photosystem salt stress Suaeda salsa unsaturated fatty acids 

Abbreviations

16:0

palmitic acid; 16:1(3t)

Δ3

trans-hexadecenoic

18:0

stearic acid

18:1

oleic acid

18:2

linoleic acid

18:3

linolenic acid

Chl

chlorophyll

DGDG

digalactosyldiacylglycerols

Fo

initial fluorescence of the dark-adapted state

Fv

variable fluorescence

Fm

maximal fluorescence of the dark-adapted state

Fs

the steady-state fluorescence

Fm

maximal fluorescence in the light-adapted state

Fv/Fm

maximal photochemical efficiency of PSII

DBI

double bond index

MGDG

monogalactosyldiacylglycerols

PC

phosphatidylcholines

PG

phosphatidylglycerols

ΦPSII

the quantum yield of PSII electron transport

SQDG

sulphoquinovosyldiacylglycerols

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful for financial support from the NSFC (National Natural Science Research Foundation of China, project No. 30870138), the China Postdoctoral Science Foundation (20090450155), the Doctoral Foundation of Shandong Province (2009BSB02023), the Postdoctoral Innovative Foundation of Shandong Province (200802009), and the Opening Foundation of the State Key Laboratory of Crop Biology, China (2008KF03).

References

  1. Allakhverdiev, S.I., Kinoshita, M., Inaba, M., Suzuki, I., Murata, N.: Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. — Plant Physiol. 125: 1842–1853, 2001.CrossRefPubMedGoogle Scholar
  2. Allakhverdiev, S.I., Nishiyama, Y., Suzuki, I., Tasaka, Y., Murata, N.: Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. — Proc. Nat. Acad. Sci. 96: 5862–5867, 1999.CrossRefPubMedGoogle Scholar
  3. Anderson, J.M.: Photoregulation of the composition, function, and structure of thylakoid membranes. — Annu. Rev. Plant Physiol. 37: 93–136, 1986.CrossRefGoogle Scholar
  4. Aro, E.M., Virgin, I., Andersson, B.: Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. — Biochim. Biophys. Acta 1143: 113–134, 1993.CrossRefPubMedGoogle Scholar
  5. Baker, N.R.: A possible role for photosystem II in environmental perturbations of photosynthesis. — Physiol. Plant. 81: 563–570, 1991.CrossRefGoogle Scholar
  6. Ben Hamed, K., Ben Youssef, N., Ranieri, A., Zarrouk, M., Abdelly, C.: Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. — J. Plant Physiol. 162: 599–602, 2005.CrossRefPubMedGoogle Scholar
  7. Berberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K., Kusano, T.: Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature. — Plant Mol. Biol. 36: 297–306, 1998.CrossRefPubMedGoogle Scholar
  8. Berry, J.A., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Anna. Rev. Plant Physiol. 31: 491–543, 1980.CrossRefGoogle Scholar
  9. Carter, D.R., Cheeseman, J.M.: The effects of external NaCI on thylakoid stacking in lettuce plants. — Plant Cell Environ. 16: 215–222, 1993.CrossRefGoogle Scholar
  10. Chen, Z.Q., Xu, C.H., Chen, M.J., Xu, L., Wang, K.F., Lin, S.Q., Kuang, T.Y.: Effect of chilling acclimation on thylakoid membrane protein of wheat. — Acta Bot. Sin. 36: 423–429, 1994.Google Scholar
  11. Cooke, D.T., Burden, R.S.: Lipid modulation of plasma memrane-bound ATPases. — Physiol. Plant. 78: 152–159, 1990.CrossRefGoogle Scholar
  12. Dakhma, W.S., Zarrouk, M., Cherif, A.: Effects of drought-stress on lipids in rape leaves. — Phytochemistry 40: 1383–1386, 1995.CrossRefGoogle Scholar
  13. Deuticke, B., Haest, C.W.M.: Lipid modulation of transport proteins in vertebrate cell-membranes. — Annu. Rev. Physiol. 49: 221–235, 1987.CrossRefPubMedGoogle Scholar
  14. Domonkos, I., Laczkó-Dobos, H., Gombos, Z.: Lipid-assisted protein-protein interactions that support photosynthetic and other cellular activities. — Prog. Lipid. Res. 47: 422–435, 2008.CrossRefPubMedGoogle Scholar
  15. Gigon, A., Matos, A.R., Laffray, D., Zuily-Fodil, Y., Pham-Thi, A.T.: Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). — Ann. Bot. 94: 345–351, 2004.CrossRefPubMedGoogle Scholar
  16. Hagio, M., Sakurai, I., Sato, S., Kato, T., Tabata, S., Wada, H.: Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. — Plant Cell Physiol. 43: 1456–1464, 2002.CrossRefPubMedGoogle Scholar
  17. Inaba, M., Sakamoto, A., Murata, N.: Functional expression in Escherichia coli of low-affinity and high-affinity Na+(Li+)/H+ antiporters of Synechocystis. — J. Bacteriol. 183: 1376–1384, 2001.CrossRefPubMedGoogle Scholar
  18. Liu, X.-Y., Li, B., Yang, J.-H., Sui, N., Yang, X.-M., Meng, Q.-W.: Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. — Photosynthetica 46: 185–192, 2008.CrossRefGoogle Scholar
  19. Lu, C.M., Qiu, N.M., Lu, Q.T., Wang, B.S., Kuang, T.Y.: Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? — Plant Sci. 163: 1063–1068, 2002.CrossRefGoogle Scholar
  20. Lu, C.M., Qiu, N.W., Wang, B.S., Zhang, J.H.: Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. — J. Exp. Bot. 54: 851–860, 2003.CrossRefPubMedGoogle Scholar
  21. Matos, M.C., Campos, P.S., Ramalho, J.C., Medeira, M.C., Maia, M.I., Semedo, J.M., Marques, N.M., Matos, A.: Photosynthetic activity and cellular integrity of the Andean legume Pachyrhizus ahipa (Wedd.) Parodi under heat and water stress. — Photosynthetica 40: 493–501, 2002.CrossRefGoogle Scholar
  22. Mikami, K., Murata, N.: Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. — Prog. Lipid. Res. 42: 527–543, 2003.CrossRefPubMedGoogle Scholar
  23. Muller, M., Santarius, K.A.: Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. — Plant Physiol. 62: 326–329, 1978.CrossRefPubMedGoogle Scholar
  24. Munns, R., Tester, M.: Mechanisms of saline tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  25. Olsson, M.: Alteration in lipid-composition, lipid-peroxidation and antioxidative protection during senescence in drought-stressed plants of Pisum sativum. — Plant Physiol. Biochem. 33: 547–553, 1995.Google Scholar
  26. Qiu, N., Chen, M., Yang, H., Wang, B.: [Comparative studies on the mechanisms of salt-tolerance and drought-tolerance of Kalanchoë daigremontiana and Suaeda salsa.] — Shandong Sci. China 14: 5–10, 2001. [In Chin.]Google Scholar
  27. Ramani, B., Zorn, H., Papentsrock, J.: Quantification and fatty acid profiles of sulfolipids of two halophytes and glycophytes grown under different salt concentrations. — Z. Naturforsch. 59: 835–842, 2004.Google Scholar
  28. Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J.M., Prieto, J.A., Randez-Gil, F.: Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. — Appl. Environ. Microbiol. 73: 110–116, 2007.CrossRefPubMedGoogle Scholar
  29. Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A.M., Benveniste, P., Hartmann, M.A.: Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. — Proc. Nat. Acad. Sci. USA 88: 6926–6930, 1991.CrossRefPubMedGoogle Scholar
  30. Siegenthaler, P.-A.: Molecular organization of acyl lipids in photosynthetic membranes of higher plants. — In: Siegenthaler, P.-A., Murata, N. (ed.): Lipids in Photosynthesis. Pp. 119–144. Kluwer Acad. Publ., Dordrecht — Boston — London 1998.Google Scholar
  31. Siegenthaler, P.-A., Eichenberger, W.: Structure, function and metabolism of plant lipids. — In: Plant Lipids-Metabolism- Congresses. Pp. 485–488. Elsevier Science Publ., Amsterdam 1984.Google Scholar
  32. Staehelin, L.A.: Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. — Photosynth. Res. 76: 185–196, 2003.CrossRefPubMedGoogle Scholar
  33. Sui, N., Li, M., Shu, D.F., Zhao, S.J., Meng, Q.W.: Antisense-mediated depletion of tomato chloroplast glycerol-3-phosphate acyltransferase affects male fertility and increases thermal tolerance. — Physiol. Plant. 130: 301–314, 2007b.CrossRefGoogle Scholar
  34. Sui, N., Li, M., Zhao, S.J., Li, F., Liang, H., Meng, Q.W.: Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. — Planta 226: 1097–1108, 2007a.CrossRefPubMedGoogle Scholar
  35. Upchurch, R.G.: Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. — Biotechnol. Lett. 30: 967–977, 2008.CrossRefPubMedGoogle Scholar
  36. van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.CrossRefGoogle Scholar
  37. Wang, B.S., Lüttge, U., Ratajczak, R.: Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. — J. Exp. Bot. 52: 2355–2365, 2001.CrossRefPubMedGoogle Scholar
  38. Xu, Y.N., Siegenthaler, P.A.: Low temperature treatments induce an increase in the relative content of both linolenic and Δ3-transhexadecenoic acids in thylakoid membrane phosphatidylglycerol of squash cotyledons. — Plant Cell Physiol. 38: 611–618, 1997.Google Scholar
  39. Zhang, M., Barg, R., Yin, M.G., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S., Ben-Hayyim, G.: Modulated fatty acid desaturation via overexpression of two distinct x-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. — Plant J. 44: 361–371, 2005.CrossRefPubMedGoogle Scholar
  40. Zhao, S.J., Shi, G.A., Dong, X.C.: [Techniques of Plant Physiological Experiment.] — China Agr. Sci. Tech. Press, Beijing 2002. [In Chin.]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Key Lab of Plant Stress Research, College of Life ScienceShandong Normal UniversityJinanP.R. China
  2. 2.Shandong Academy of Agricultural SciencesJinanP.R. China

Personalised recommendations