, 47:451 | Cite as

Isolation and characterization of photosystem II core complexes with high oxygen evolution activity from spinach using the non-ionic detergent 6-O-(N-heptylcarbamoyl)-methyl-α-D-glucopyranoside

Original Papers


Two different kinds of oxygen evolving photosystem II (PSII) core complexes were isolated in the present study by solubilization of PSII enriched thylakoid membranes from spinach with the non-ionic detergent 6-O-(N-heptylcarbamoyl)-methyl-α-D-glucopyranoside (Hecameg) under different conditions. The PSII core complex isolated at higher ionic strength was similar to that isolated by using octyl-β-D-glucopyranoside (OGP) and lacked the 23 and 17 kDa extrinsic proteins of the oxygen evolving complex but retained the 22 kDa PsbS protein. Solubilization of the PSII membranes with Hecameg at lower ionic strength allowed the isolation of another PSII complex that retained all the three extrinsic proteins (33, 23 and 17 kDa) of the oxygen evolving complex but was depleted of the 22 kDa PsbS protein. This complex exhibited high rates of oxygen evolution and was found to be more sensitive to DCMU indicating a better structural and functional integrity and may be treated as the minimal functional unit required for PSII photochemistry. The detergent Hecameg is relatively inexpensive and the methodology remains simple since it does not require any chromatography or density gradient ultracentrifugation.

Additional key words

Hecameg oxygen evolution photosystem II 











light-harvesting complex


2-(N-morpholino) ethanesulfonic acid




polyacrylamide gel electrophoresis


photosystem II


polyvinylidene difluoride


sodium dodecyl sulfate


  1. Arnon, D.I.: Copper enzymes in isolated chloroplasts — polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.CrossRefPubMedGoogle Scholar
  2. Bergantino, E., Segalla, A., Brunetta, A., Teardo, E., Rigoni, F., Giacometti, G.M., Szabo, I.: Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. — Proc. Natl. Acad. Sci. USA 100: 15265–15270, 2003.CrossRefPubMedGoogle Scholar
  3. Brenner, C., Jan, G., Chevalier, Y., Wróblewski, H.: Evaluation of the efficacy of zwitterionic dodecyl carboxybetaine surfactants for the extraction and the separation of mycoplasma membrane protein antigens. — Anal. Biochem. 224: 515–523, 1995.CrossRefPubMedGoogle Scholar
  4. Dietrich, J., Kuhlbrandt, W.: Purification and two-dimensional crystallization of a highly active cytochrome b 6 f complex from spinach. — FEBS Lett. 463: 97–102, 1999.CrossRefPubMedGoogle Scholar
  5. Dunahay, T.G., Staehelin, L.A.: Isolation and characterization of a new minor chlorophyll a/b-protein complex (CP24) from spinach. — Plant Physiol. 80: 429–434, 1986.CrossRefPubMedGoogle Scholar
  6. Enami, I., Kamino, K., Shen, J.-R., Satoh, K., Katoh, S.: Isolation and characterization of Photosystem II complexes which lack light harvesting chlorophyll a/b proteins but retain three extrinsic proteins related to oxygen evolution from spinach. — Biochim. Biophys. Acta 977: 33–39, 1989.CrossRefGoogle Scholar
  7. Frindi, M., Michels, B., Zana, R.: Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solution of nonionic surfactants with a short alkyl chain. 3. Surfactants with a sugar head group. — J. Phys. Chem. 96: 8137–8141, 1992.CrossRefGoogle Scholar
  8. Ghanotakis, D.F., Babcock, G.T., Yocum, C.F.: Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations. — FEBS Lett. 167: 127–130, 1984a.CrossRefGoogle Scholar
  9. Ghanotakis, D.F., Topper, J.N., Babcock, G.T., Yocum, C.F.: Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity site for Ca2+ on the oxidizing side of Photosystem II. — FEBS Lett. 170: 169–173, 1984b.CrossRefGoogle Scholar
  10. Ghanotakis, D.F., Demetriou, D.M. and Yocum, C.F.: Isolation and characterization of an oxygen-evolving Photosystem II reaction center core preparation and a 28 kDa Chl-a-binding protein. — Biochim. Biophys. Acta 891: 15–21, 1987.CrossRefGoogle Scholar
  11. Haag, E., Irrgang, K.-D., Boekema, E.J., Renger, G.: Functional and structural analysis of Photosystem II core complexes from spinach with high oxygen evolution capacity. — Eur. J. Biochem. 189: 47–53, 1990.CrossRefPubMedGoogle Scholar
  12. Hankamer, B., Nield, J., Zheleva, D., Boekema, E., Jansson, S., Barber, J.: Isolation and biochemical characterization of monomeric and dimeric Photosystem II complexes from spinach and their relevance to the organization of Photosystem II in vivo. — Eur. J. Biochem. 243: 422–429, 1997.CrossRefPubMedGoogle Scholar
  13. Horton, P., Ruban, A.V., and Walters, R.G.: Regulation of light harvesting in green plants. — Annu. Rev. Plant Physiol. 47: 655–684, 1996.CrossRefGoogle Scholar
  14. Ikeuchi, M., Inoue, Y.: Characterization of O2 evolution by a wheat photosystem II reaction center complex isolated by a simplified method: Disjunction of secondary acceptor quinone and enhanced Ca2+ demand. — Arch. Biochem. Biophys. 247:97–107, 1986.CrossRefPubMedGoogle Scholar
  15. Jansson, S.: A guide to the Lhc genes and their relation in Arabidopsis. — Trends Plant Sci. 4: 236–240, 1999.CrossRefPubMedGoogle Scholar
  16. Kashino, Y., Yamashita, M, Okamoto, Y, Koike, H. and Satoh, K.: Mechanisms of electron flow through the QB site in photosystem II. 3. Effects of the presence of membrane structure on the redox reactions at the Qb site. — Plant Cell Physiol. 37: 976–982, 1996.Google Scholar
  17. Kiss, A.Z., Ruban, A.V. Horton, P.: The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. — J. Biol. Chem. 283: 3972–3978, 2008.CrossRefPubMedGoogle Scholar
  18. Kovacs, L., Damkjaer, J., Kereiche, S., Ilioaia, C., Ruban, A.V., Boekema, E.J., Jansson, S. and Horton, P.: Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. — Plant Cell 18: 3106–3120, 2006.CrossRefPubMedGoogle Scholar
  19. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.CrossRefPubMedGoogle Scholar
  20. Lee, J.W., Chan, M., Law, T.V., Kwon, H.J., and Jap, B.K.: Preliminary crystallographic study of the mitochondrial cytochrome bc 1 complex: improved crystallization and flash-cooling of a large membrane protein. — J. Mol. Biol. 252: 15–19, 1995.CrossRefPubMedGoogle Scholar
  21. Mishra, R.K., Ghanotakis, D.F.: Selective extraction of 22 kDa and 10 kDa polypeptides from photosystem II without removal of 23 kDa and 17 kDa extrinsic proteins. — Photosynth. Res. 36: 11–16, 1993.CrossRefGoogle Scholar
  22. Mishra, R.K. and Singhal, G.S.: Function of photosynthetic apparatus of intact wheat leaves under high light and heat-stress and its relationship with peroxidation of thylakoid lipids. — Plant Physiol. 98:1–6, 1991.CrossRefGoogle Scholar
  23. Niyogi, K. K.: Photoprotection revisited: Genetic and molecular approaches. — Annu. Rev. Plant Physiol. 50: 333–359, 1999.CrossRefGoogle Scholar
  24. Peterson, R.B., Havir, E.A.: Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective psbS gene. — Planta 214: 142–152, 2001CrossRefPubMedGoogle Scholar
  25. Pierre, Y., Breyton, C., Kramer, D., and Popot, J.-L.: Purification and characterization of the cytochrome b 6 f complex from Chlamydomonas reinhardtii. — J. Biol. Chem. 270: 29342–29349, 1995.CrossRefPubMedGoogle Scholar
  26. Pierre, Y., Breyton, C., Lemoine, Y., Robert, B., Vernotte, C., Popot, J.-L.: On the presence and role of a molecule of chlorophyll a in the cytochrome b 6 f complex. — J. Biol. Chem. 272: 21901–21908, 1997.CrossRefPubMedGoogle Scholar
  27. Plusquellec, D., Chevalier, G., Talibart, R., Wróblewski, H.: Synthesis and characterization of 6-O-(N-heptylcarbamoyl)- methyl-α-D-glucopyranoside, a new surfactant for membrane studies. — Anal. Biochem. 179:145–153, 1989.CrossRefPubMedGoogle Scholar
  28. Ravaud, S., Do Cao, M.-A., Jidenko, M., Ebel, C., Le Maire, M., Jault, J.-M., Di Pietro, A., Haser, R., Aghajari, N.: The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. — Biochem J. 395:345–353, 2006.CrossRefPubMedGoogle Scholar
  29. Ruiz, M.B., Prado, A., Goni, F.M., Alonso, A.: An assessment of the biochemical applications of the nonionic surfactant hecameg. — Biochim. Biophys. Acta 1193: 301–306, 1994.CrossRefGoogle Scholar
  30. Sanders, M.C., Way, M., Sakai, J., Matsudaira, P.: Characterization of the actin cross-linking properties of the scruincalmodulin complex from the acrosomal process of Limulus sperm. — J. Biol. Chem. 271: 2651–2657, 1996.CrossRefPubMedGoogle Scholar
  31. Spangfort, M., Larsson, U.K., Ljungberg, U., Ryberg, M., Andersson, B., Klein, R., Wedel, N., Herrman R.G.: The 20 kDa apo-polypeptide of the chlorophyll a/b protein complex CP24. — In: Barber, J., Malkin, R. (ed.): Techniques and New Developments in Photosynthesis Research. Pp. 145–148. Plenum Press, New York — London 1989.Google Scholar
  32. Teardo, E., de Laureto, P.P., Bergantino, E., Dalla Vechia, F., Rigoni, F., Szabo, I., Giacometti, G.M.: Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. — Biochim. Biophys. Acta 1767: 703–711, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of LucknowLucknowIndia

Personalised recommendations