, 47:347 | Cite as

Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition

Original Papers


Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg−1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment.

Additional key words

5-aminolevulinic acid antioxidant enzymes chlorophyll fluorescence JIP test low light stress photosynthesis watermelon 



5-aminolevulinic acid


ascorbate peroxidase


intercellular CO2 concentration






transpiration rate


electron transport rate


maximum fluorescence


maximum fluorescence of the light-adapted leave


initial fluorescence


variable fluorescence


maximal photochemical effciency of PSII


fresh mass


approximate initial slope of the fluorescence transient


stomata conductance

JIP test

formulate a group of fluorescence parameters, which quantify the stepwise flow of energy through PSII


superoxide anion radical


oxygen evolving complex


chlorophyll a fluorescence transients


net photosynthetic rate


performance index on a basis of absorption






reduced QA, one electron acceptor bound in PQ


completely reduced QA


photochemical quenching


superoxide dismutase


relative variable fluorescence intensity at the J-step


amplitude of the K step


quantum yield of electron transport


possibility of a trapped exciton moves an electron into the electron transport chain beyond QA


actual photosynthetic efficiency


  1. Appenroth, K.J., Stöckel, J., Srivastava, A., Strasser, R.J.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115:49–64, 2001.CrossRefPubMedGoogle Scholar
  2. Beauchamp, C.O., Fridovich, I.: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.CrossRefPubMedGoogle Scholar
  3. Bindu, R.C., Vivekanandan, M.: Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. — Plant Growth Regul. 26: 15–18, 1998.CrossRefGoogle Scholar
  4. Demmig-Adams, B., Adams, W.W., III., Baker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plant. 98: 253–264, 1996.CrossRefGoogle Scholar
  5. Demmig-Adams, B., Adams, W.W., III., Logan, B.A., Verhoeven, A.S.: Xanthophyll cycle-dependent energy dissipation and flexible Photosystem-II efficiency in plants acclimated to light stress.— Aust. J. Plant Physiol. 22: 249–260, 1995.CrossRefGoogle Scholar
  6. Demmig-Adams, B., Adams, W.W., III.: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species.— Planta 198: 460–470, 1996.CrossRefGoogle Scholar
  7. He, H.J., Dai, Z.S., Xiao, A.J., Zhen, S.J.: [Research on photosynthesis of watermelon. — Chinese watermelon and muskmelon.] 1: 18–20, 1994.[In Chin.]Google Scholar
  8. Hotta, Y., Tanaka, H., Takaoka, H., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on the yield of several crops. — Plant Growth Regul. 22: 109–114, 1997a.CrossRefGoogle Scholar
  9. Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., Konnai, M.: Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. — J. Pest. Sci. 23: 29–33, 1998.Google Scholar
  10. Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M.: New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. — Biosci. Biotech. Biochem. 61: 2025–2028, 1997b.CrossRefGoogle Scholar
  11. Jones, D.K., Dalton, D.A., Rosell, F.I., Raven, E.L.: Class I heme peroxidases: Characterization of soybean ascorbate peroxidase. — Arch. Biochem. Biophys. 360: 73–178, 1998.CrossRefGoogle Scholar
  12. Kang, L., Cheng, Y., Wang, L.J.: [Effects of 5-aminolevulinic acid (ALA) on the photosynthesis and anti-oxidative enzymes activities of the leaves of greenhouse watermelon in summer and winter.] — Acta Bot. Boreal. Occident. Sin. 26:2297–2301, 2006. [In Chin.]Google Scholar
  13. Krüger, G.H.J., Tsimilli-Michael, M., Strasser, R.J.: Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. — Physiol. Plant. 101: 265–277, 1997.CrossRefGoogle Scholar
  14. Kumar, M.A., Chaturvedi, S., Söll, D.: Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. — Phytochem. 51: 847–851, 1999.CrossRefGoogle Scholar
  15. Liu, H., Kang, L., Wang, L.J. [Promotion of 5-aminolevunlinic acid on seed germination of watermelon (Citrullus lanatus) under salt stress.] — J. Fruit Sci. 23: 854–859, 2006a. [In Chin.]Google Scholar
  16. Liu, W.Q., Kang, L., Wang, L.J.: [Effect of 5-aminolevulinic acid (ALA) on photosynthesis and its relationship with antioxidant enzymes of strawberry leaves.] — Acta. Bot. Boreal. Occident. Sin. 26: 57–62, 2006b. [In Chin.]Google Scholar
  17. Lukšienė, Ž., Danilčenko, H., Tarasevičienė, Ž., Anusevičius, Ž., Marozienė, A., Nivinskas, H.: New approach to the fungal decontamination of wheat used for wheat sprouts: Effects of aminolevulinic acid. — Int. J. Food Microbiol. 116: 153–158, 2007.CrossRefPubMedGoogle Scholar
  18. Mehler, A.H.: Studies on reactions of illuminated chloroplasts. 1. Mechanism of the reduction of oxygen and other Hill reagents. — Arch. Biochem. Biophys. 33: 65–77, 1951.CrossRefGoogle Scholar
  19. Memon, S. A., Hou, X.L, Wang, L.J., Li, Y.: Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). — Acta Physiol. Plant. 31: 51–57, 2009.CrossRefGoogle Scholar
  20. Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., Tanaka, K.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — J. Plant Physiol. 160: 1085–1091, 2003.CrossRefPubMedGoogle Scholar
  21. Rebeiz, C.A., Montazer-Zouhoor, A., Hopen, H., and Wu, S.M.: Photodynamic herbicides. I. Concept and phenomenology. — Enzyme Microb. Technol. 6: 390–396, 1984.Google Scholar
  22. Srivastava, A., Govindjee, Strasser, R.J.: Greening of peas: parallel measurements on 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. — Photosynthetica 37: 365–392, 1999.CrossRefGoogle Scholar
  23. Srivastava, A., Guisse, B., Greppin, H., Strasser, R.J.: Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. — Biochim. Biophys. Acta 1320: 95–106, 1997.CrossRefGoogle Scholar
  24. Srivastava, A., Juttner, F., Strasser, R.J.: Action of the allelochemical, fischerellin A, on photosystem II. — Biochim. Biophys. Acta 1364: 326–336, 1998.CrossRefPubMedGoogle Scholar
  25. Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.CrossRefGoogle Scholar
  26. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor & Francis Press, London — New York 2000.Google Scholar
  27. Sun, Y.P., Wang, L.J.: [Effects of 5-aminolevulinic acid (ALA) on chlorophyll fluorescence dynamics of watermelon seedlings under shade condition.] — Acta Hort. Sinica 34: 901–908, 2007. [In Chin.]Google Scholar
  28. Sun, Y.P., Wei, Z.Y., Zhang Z.P., Wang, L.J.: [Promotion of 5-aminolevulinic acid (ALA) on high light photoinhibition of watermelon grown under shade condition.] — Acta. Bot. Boreal. Occident. Sin. 28: 1384–1390, 2008. [In Chin.]Google Scholar
  29. Tan, W., Liu, J., Dai, T., Jing, Q., Cao, W., Jiang, D.: Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. — Photosynthetica. 46: 21–27, 2008.CrossRefGoogle Scholar
  30. Terashima, I., Noguchi, K., Itoh-Nemoto, T., Park, Y.M., Kubo, A., Tanaka, K.: The cause of PSI photoinhibition at lowtemperatures in leaves of Cucumis sativus, a chilling-sensitive plant. — Physiol. Plant. 103: 295–303, 1998.CrossRefGoogle Scholar
  31. Tsiftsoglou, A.S., Tsamadou A.I., Papadopoulou, L.C.: Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. — Pharmacol. Therapeutics 111: 327–345, 2006.CrossRefGoogle Scholar
  32. von Wettstein, D., Gough, S., Kannangara, C.G.: Chlorophyll biosynthesis. — Plant Cell. 7:1039–1057, 1995.CrossRefGoogle Scholar
  33. Wang, L.J., Jiang, W.B., Huang, B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress condition. — Physiol. Plant. 121: 258–264, 2004a.CrossRefPubMedGoogle Scholar
  34. Wang, L.J., Jiang, W.B., Liu, H., Liu, W.Q., Kang, L., Hou, X.L.: Promotion of 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. — J. Integrative Plant Biol. 47: 1084–1091, 2005a.CrossRefGoogle Scholar
  35. Wang, L.J., Jiang, W.B., Zhang, Z., Yao, Q.H., Matsui, H., Ohara, H.: [Biosynthesis and physiological activities of 5-aminolevulinic acid and its potential application in agriculture.] — Plant Physiol. Comm. 39:185–192, 2003. [In Chin.]Google Scholar
  36. Wang, L.J., Liu, W.Q., Sun, G.R., Wang, J.B., Jiang, W.B., Liu, H., Li, Z.Q., Zhuang, M.: [Effect of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of radish seedlings.] — Acta. Bot. Boreal.-Occident. Sin. 25: 488–496, 2005b. [In Chin.]Google Scholar
  37. Wang, L.J., Shi, W., Liu, H., Liu, W.Q., Jiang, W.B., Hou, X.L.: [Effects of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi.] — J. Nanjing Agr. University. 27: 34–38, 2004b. [In Chin.]Google Scholar
  38. Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., Takeuchi, Y.: Improving salt tolerance of cotton seedlings with 5-aminolevulinc acid. — Plant Growth Regul. 32: 99–103, 2000.CrossRefGoogle Scholar
  39. Weng, X.-Y., Xu, H.-X., Yang, Y., Peng, H.-H.: Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. — Biol. Plant. 52: 307–313, 2008.CrossRefGoogle Scholar
  40. Zhang, W.F., Zhang, F., Raziuddin, R., Gong, H.J., Yang, Z.M., Lu, L., Ye, Q.F., Zhou, W.J.: Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. — J. Plant Growth Regul. 27: 159–169, 2008a.CrossRefGoogle Scholar
  41. Zhang, Z.P., Wang, L.J., Yao, Q.H.: [Study on leaf photosynthesis and chlorophyll fluorescence of transgenic tobacco over-producing 5-aminolevulinic acid (ALA).] — Acta Bot. Boreal.-Occident. Sin. 28: 1196–1202, 2008b. [In Chin.]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations