, Volume 47, Issue 2, pp 304–308 | Cite as

Effects of rapidly imposed water deficit on photosynthetic parameters of three C4 grasses

  • A.S. Soares-Cordeiro
  • A.E. Carmo-Silva
  • A. Bernardes da Silva
  • J. Marques da Silva
  • A.J. Keys
  • M.C. Arrabaça
Brief Communication


Water deficit, when rapidly imposed on three C4 grasses of the different metabolic subtypes, Paspalum dilatatum Poiret (NADP-malic enzyme), Cynodon dactylon (L.) Pers (NAD-malic enzyme) and Zoysia japonica Steudel (phosphoenolpyruvate carboxykinase), caused decreases in photosynthetic rates, in the quantum yield of PS II and photochemical quenching, and in the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC). The results provide evidence for non-stomatal limitations of photosynthesis differing in nature between the three species.

Additional key words

chlorophyll a fluorescence drought stress NAD-malic enzyme NADP-malic enzyme phosphoenolpyruvate carboxykinase phosphoenolpyruvate carboxylase photosynthetic capacity Rubisco 



dry mass


NAD-malic enzyme


NADP-malic enzyme


non-photochemical quenching


phosphoenolpyruvate carboxylase


phosphoenolpyruvate carboxykinase


rate of photosynthesis at saturating CO2 and high irradiance


photosynthetic photon flux density


photosystem II


photochemical quenching


ribulose-1,5-bisphosphate carboxylase/oxygenase


leaf relative water content


PEPC maximal activity


Rubisco total activity


effective quantum yield of PS II electron transport


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton, A.R., Burnell, J.N., Furbank, R.T., Jenkins, C.L.D., Hatch, M.D.: Enzymes of C4 photosynthesis.-In: Lea, P.J. (ed.): Methods in Plant Biochemistry. Enzymes of Primary Metabolism. Vol. 3. Pp. 39–72. Academic Press, London 1990.Google Scholar
  2. Bakrim, N., Echevarria, C., Cretin, C., Arrio-Dupont, M., Pierre, J.N. Vidal, J., Chollet, R., Gadal, P.: Regulatory phosphorylation of sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade.-Eur. J. Biochem. 204: 821–830, 1992.PubMedCrossRefGoogle Scholar
  3. Carmo-Silva, A.E., Soares, A.S., Marques da Silva, J., Bernardes da Silva, A., Keys, AJ., Arrabaça, M.C.: Photosynthetic responses of three C4 grasses of different metabolic subtypes to water deficit.-Funct. Plant Biol. 34: 204–213, 2007.CrossRefGoogle Scholar
  4. Castrillo, M., Fernandez, D., Calcagno, A.M., Trujillo, I., Guenni, L.: Responses of ribulose-1,5-bisphosphate carboxylase, protein content, and stomatal conductance to water deficit in maize, tomato, and bean.-Photosynthetica 39: 221–226, 2001.CrossRefGoogle Scholar
  5. Čatský, J.: Determination of water deficit in discs cut out from leaf blades.-Biol. Plant. 2: 76–77, 1960.CrossRefGoogle Scholar
  6. Du, Y.C., Kawamitsu, Y., Nose, A., Hiyane, S., Murayama, S., Wasano, K., Uchida, Y.: Effects of water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.).-Aust. J. Plant Physiol. 23: 719–726, 1996.CrossRefGoogle Scholar
  7. Foyer, C.H., Valadier, M.-H., Migge, A., Becker, T.W.: Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves.-Plant Physiol. 117: 283–292, 1998.PubMedCrossRefGoogle Scholar
  8. Ghannoum, O.: C4 photosynthesis and water stress.-Ann. Bot. 103: 635–644, 2009.PubMedCrossRefGoogle Scholar
  9. Ghannoum, O., Conroy, J.P., Driscoll, S.P., Paul, M.J., Foyer, C.H., Lawlor, D.W.: Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses.-New Phytol. 159: 599–608, 2003.CrossRefGoogle Scholar
  10. Heckathorn, S.A., DeLucia, E.H., Zielinski, R.E.: The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses.-Physiol. Plant. 101: 173–182, 1997.CrossRefGoogle Scholar
  11. Lal, A., Edwards, E.: Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity.-Aust. J. Plant Physiol. 23: 403–412, 1996.Google Scholar
  12. Lan, Y., Woodrow, I.E., Mott, K.A: Light dependent changes in ribulose bisphosphate carboxylase activase activity in leaves.-Plant Physiol. 99: 304–309, 1992.PubMedCrossRefGoogle Scholar
  13. Long, S.P.: Environmental Responses.-In: Sage, R.F., Monson, R.K. (ed.): C4 Plant Biology. Pp. 215–249. Academic Press, New York 1999.CrossRefGoogle Scholar
  14. Loreto, F., Tricoli, D., Di Marco, G.: On the relationship between electron transport rate and photosynthesis in leaves of the C4 plant Sorghum bicolor exposed to water stress, temperature changes and carbon metabolism inhibition.-Aust. J. Plant Physiol. 22: 885–892, 1995.Google Scholar
  15. Marques da Silva, J., Arrabaça, M.C.: Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits.-Physiol. Plant. 121: 409–420, 2004a.CrossRefGoogle Scholar
  16. Marques da Silva, J., Arrabaça, M.C.: Photosynthetic enzymes of the C4 grass Setaria sphacelata under water stress: a comparison between rapidly and slowly imposed water deficit.-Photosynthetica 42: 43–47, 2004b.CrossRefGoogle Scholar
  17. Parry, M.A.J., Andralojc, P.J., Khan, S., Lea, P.J., Keys, A.J.: Rubisco activity: Effects of drought stress.-Ann. Bot. 89: 833–839, 2002.PubMedCrossRefGoogle Scholar
  18. Parry, M.A.J., Andralojc, P.J., Parmar, S., Keys, A.J., Habash, D., Paul, M.J., Alred, R., Quick, W.P., Servaites, J.C.: Regulation of Rubisco by inhibitors in the light.-Plant Cell Environ. 20: 528–534, 1997.CrossRefGoogle Scholar
  19. Parry, M.A.J., Delgado, E., Vadell, J., Keys, A.J., Lawlor, D.W., Medrano, H.: Water stress and the diurnal activity of ribulose-1,5-bisphosphate carboxylase in field grown Nicotiana tabacum genotypes selected for survival at low CO2 concentrations.-Plant Physiol. Biochem. 31: 113–120, 1993.Google Scholar
  20. Saccardy, K., Cornic, G., Brulfert, J., Reyss, A.: Effect of drought stress on net CO2 uptake by Zea leaves.-Planta 199: 589–595, 1996.CrossRefGoogle Scholar
  21. Walker, R.P., Chen, Z.-H., Acheson, R.M., Leegood, R.C.: Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C4 plant guinea grass.-Plant Physiol. 128: 165–172, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A.S. Soares-Cordeiro
    • 1
  • A.E. Carmo-Silva
    • 1
    • 2
  • A. Bernardes da Silva
    • 1
  • J. Marques da Silva
    • 1
  • A.J. Keys
    • 2
  • M.C. Arrabaça
    • 1
  1. 1.Centro de Engenharia Biológica and Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  2. 2.Department of Plant Sciences, Centre for Crop Genetic ImprovementRothamsted ResearchHarpenden HertfordshireUK

Personalised recommendations