Advertisement

Photosynthetica

, 46:581 | Cite as

Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling

  • W. H. Hu
  • X. S. Song
  • K. Shi
  • X. J. Xia
  • Y. H. Zhou
  • J. Q. Yu
Original Papers

Abstract

In order to clarify the relationship between chill-induced disturbance in photosynthetic, respiratory electron transport and the metabolism of reactive oxygen species (ROS), leaf gas exchange, chlorophyll fluorescence quenching, respiration, and activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) were investigated in chloroplasts and mitochondria of cucumber (Cucumis sativus) leaves subjected to a chill (8 °C) for 4 d. Chilling decreased net photosynthetic rate (P N) and quantum efficiency of photosystem 2 (ΦPS2), but increased the ratio of ΦPS2 to the quantum efficiency of CO2 fixation (ΦCO2) and non-photochemical quenching (NPQ) in cucumber leaves. While chilling inhibited the activity of cytochrome respiration pathway, it induced an increase of alternative respiration pathway activity and the reduction level of Q-pool. Chilling also significantly increased O2 production rate, H2O2 content, and SOD and APX activities in chloroplasts and mitochondria. There was a more significant increase in SOD and APX activities in chloroplasts than in mitochondria with the increase of membrane-bound Fe-SOD and tAPX in chloroplasts being more significant than other isoenzymes. Taken together, chilling inhibited P N and cytochrome respiratory pathway but enhanced the photosynthetic electron flux to O2 and over-reduction of respiratory electron transport chain, resulting in ROS accumulation in cucumber leaves. Meanwhile, chilling resulted in an enhancement of the protective mechanisms such as thermal dissipation, alternative respiratory pathway, and ROS-scavenging mechanisms (SODs and APXs) in chloroplasts and mitochondria.

Additional key words

ascorbate peroxidase Cucumis sativus net photosynthetic rate photosynthetic electron transport quantum efficiency reactive oxidative metabolism respiratory electron transport respiration pathways superoxide dismutase 

Abbreviations

AOX

alternative oxidase

APX

ascorbate peroxidase

AsA

reduced ascorbate

cAPX

cytosol APX

Chl

chlorophyll

Cu/Zn-SOD

copper-zinc SOD

Fe-SOD

iron SOD

FM

fresh mass

mAPX

microbody APX

Mn-SOD

manganese SOD

NPQ

non-photochemical quenching coefficient

O2•−

superoxide

Q-pool

ubiquinone pool

PN

net photosynthetic rate

PETC

photosynthetic electron transport chain

PPFD

photosynthetic photon flux density

PS

photosystem

RETC

respiratory electron transport chain

ROS

reactive oxygen species

sAPX

stromal APX

SHAM

salicylhydroxamic acid

SOD

superoxide dismutase

tAPX

thylakoid membrane-bound APX

UQ

the oxidized forms of ubiquinone

UQr

the reduced forms of ubiquinone

UQr/UQt

the reduction level of ubiquinone pool

VKCN

alternative pathway activity

VSHAM

cytochome pathway activity

Vt

total respiration

ΦCO2

the quantum efficiency of CO2 fixation

ΦPS2

quantum efficiency of PS2

References

  1. Alscher, R.G., Donahue, J.L., Cramer, C.L.: Reactive oxygen species and antioxidants: relationships in green cells.-Physiol. Plant. 100: 224–233, 1997.CrossRefGoogle Scholar
  2. Alscher, R.G., Erturk, N., Heath, L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.-J. exp. Bot. 53: 1331–1341, 2002.PubMedCrossRefGoogle Scholar
  3. Amako, K., Chen, G.-X., Asada, K.: Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isoenzymes of ascorbate peroxidase in plants.-Plant Cell Physiol. 35: 497–504, 1994.Google Scholar
  4. Asada, K.: Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants.-Physiol. Plant. 85: 235–241, 1992.CrossRefGoogle Scholar
  5. Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.PubMedCrossRefGoogle Scholar
  6. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis.-In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. (ed.): Photoinhibition. Pp. 227–287. Elsevier, Amsterdam-New York-Oxford 1987.Google Scholar
  7. Bartoli, C.G., Gomez, F., Gergoff, G., Guiamét, J.J., Puntarulo, S.: Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions.-J. exp. Bot. 56: 1269–1276, 2005.PubMedCrossRefGoogle Scholar
  8. Bowler, C., Montagu, M.V., Inzé, D.: Superoxide dismutase and stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83–116, 1992.CrossRefGoogle Scholar
  9. Chaumont, M., Morot-Gaudry, J.F., Foyer, C.H.: Effects of photoinhibitory treatment on CO2 assimilation, the quantum yield of CO2 assimilation, D1 protein, ascorbate, glutathione, xanthophylls contents and the electron transport rate in vine leaves.-Plant Cell Environ. 18: 1358–1366, 1995.CrossRefGoogle Scholar
  10. Demmig-Adams, B., Adams, W.W., III, Barker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.-Physiol. Plant. 98: 253–264, 1996.CrossRefGoogle Scholar
  11. Fadzillah, N.M., Gill, V., Pinch, R.P., Burdon, R.H.: Chilling, oxidative stress, and antioxidant responses in shoot cultures of rice.-Planta 199: 552–556, 1996.CrossRefGoogle Scholar
  12. Foyer, C.H., Vanacker, H., Gomez, L.D., Harbinson, J.: Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review.-Plant Physiol. Biochem. 40: 659–668, 2002.CrossRefGoogle Scholar
  13. Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature.-Plant Physiol. 116: 571–580, 1998.PubMedCrossRefGoogle Scholar
  14. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases occurrence in higher plant.-Plant Physiol. 59: 309–314, 1977.PubMedCrossRefGoogle Scholar
  15. Gómez, J.M., Jiménez, A., Olmos, E., Sevilla, F.: Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts.-J. exp. Bot. 55: 119–130, 2004.PubMedCrossRefGoogle Scholar
  16. Hendrickson, L., Ball, M.C., Osmond, C.B., Furbank, R.T., Chow, W.S.: Assessment of photoprotection mechanisms of grapevines at low temperature.-Funct. Plant Biol. 30: 631–642, 2003.CrossRefGoogle Scholar
  17. Hu, W.H., Shi, K., Song, X.Sh., Xia, X.J., Zhou, Y.H., Yu, J.Q.: Different effects of chilling on respiration in leaves and roots of cucumber (Cucumis sativus).-Plant Physiol. Biochem. 44: 837–843, 2006.PubMedCrossRefGoogle Scholar
  18. Jiménez, A., Hernandez, J.A., del-Rio, L.A., Sevilla, F.: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves.-Plant Physiol. 114: 275–284, 1997.PubMedGoogle Scholar
  19. Jiménez, A., Hernández, J.A., Ros, A., Barcelo, L., Sandalio, M., del-Rio, L.A., Sevilla, F.: Mitochondria and peroxisomal ascorbate peroxidase of pea leaves.-Physiol. Plant. 104: 687–692, 1998.CrossRefGoogle Scholar
  20. Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., Foyer, C.H.: Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.-J. exp. Bot. 56: 417–423, 2004.PubMedCrossRefGoogle Scholar
  21. Luxová, M., Gašpariková, O.: The effect of low temperature on root respiration in maize.-Biológia (Bratislava) 54: 453–458, 1999.Google Scholar
  22. Millenaar, F.F., Gonzalez-Meler, M.A., Siedow, J.N., Wagner, A.M., Lambers, H.: Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua roots.-J. exp. Bot. 53: 1081–1088, 2002.PubMedCrossRefGoogle Scholar
  23. Mittler, R.: Oxidative stress, antioxidants and stress tolerance.-Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  24. Mittler, R., Vanderauwera, S., Gollery, M., Breusegem, F.V.: Reactive oxygen gene network of plants.-Trends Plant Sci. 9: 490–498, 2004.PubMedCrossRefGoogle Scholar
  25. Mittova, V., Tal, M., Volokita, M., Guy, M.: Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species.-Physiol. Plant. 115: 393–400, 2002.PubMedCrossRefGoogle Scholar
  26. Mittova, V., Theodoulou, F.L., Kiddle, G., Volokita, M., Tal, M., Foyer, C.H., Guy, M.: Comparison of mitochondria ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii — a role for matrix isoforms in protection against oxidative damage.-Plant Cell Environ. 27: 237–250, 2004.CrossRefGoogle Scholar
  27. Mittova, V., Volokita, M., Guy, M., Tal, M.: Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii.-Physiol. Plant. 110: 42–51, 2000.CrossRefGoogle Scholar
  28. Møller, I.M.: Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species.-Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 561–591, 2001.PubMedCrossRefGoogle Scholar
  29. Neill, S.J., Desikan, R., Clarke, A., Hhrst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signaling molecules in plants.-J. exp. Bot. 53: 237–247, 2002.CrossRefGoogle Scholar
  30. Okamoto, O.K., Robertson, D.L., Fagan, T.F., Hastings, J.W., Colepicolo, P.: Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase.-J. biol. Chem. 276: 19989–19993, 2001.PubMedCrossRefGoogle Scholar
  31. Ort, D.R., Baker, N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis?-Curr. Opin. Plant Biol. 5: 193–198, 2002.PubMedCrossRefGoogle Scholar
  32. Purvis, A.C., Shewfelt, R.L.: Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?-Physiol. Plant. 88: 712–718, 1993.CrossRefGoogle Scholar
  33. Schöner, S., Krause, G.H.: Protective systems against active oxygen species in spinach: response to cold acclimation in excess light.-Planta 180: 383–389, 1990.CrossRefGoogle Scholar
  34. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K.: Regulation and function of ascorbate peroxidase isoenzymes.-J. exp. Bot. 53: 1305–1319, 2002.PubMedCrossRefGoogle Scholar
  35. Takeda, T., Yokota, A., Shigeoka, S.: Resistance of photosynthesis to hydrogen peroxide in algae.-Plant Cell Physiol. 36: 1089–1095, 1995.Google Scholar
  36. van Breusegem, F., Slooten, L., Stassart, J.M., Moens, T., Botterman, J., van Montagu, M., Inze, D.; Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize.-Plant Cell Physiol. 40: 515–523, 1999.PubMedGoogle Scholar
  37. van Camp, W., Capiau, K., van Montagu, M., Inze, D., Slooten, L.: Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.-Plant Physiol. 112: 1703–1714, 1996.PubMedCrossRefGoogle Scholar
  38. Vanlerberghe, G.C., McIntosh, L.: Alternative oxidase: from gene to function.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 703–734, 1997.PubMedCrossRefGoogle Scholar
  39. Wada, K., Tada, T., Nakamura, Y., Ishikawa, T., Yabuta, Y., Yoshimura, K., Shigeoka, S., Nishimura, K.: Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability.-J. Biochem. 134: 239–244, 2003.PubMedCrossRefGoogle Scholar
  40. Wagner, A.M., Moore, A.L.: Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism.-Biosci. Rep. 17: 319–333, 1997.PubMedCrossRefGoogle Scholar
  41. Wagner, A.M., Wagner, M.J.: Measurements of in vivo ubiquinone reduction levels in plant cells.-Plant Physiol. 108: 277–283, 1995.PubMedGoogle Scholar
  42. Yoshida, K., Terashima, I., Noguchi, K.: Distinct role of the cytochrome pathway and alternative oxidase in leaf photosynthesis.-Plant Cell Physiol. 47: 22–31, 2006.PubMedCrossRefGoogle Scholar
  43. Yoshimura, K., Yabuta, Y., Ishikawa, T., Shigeoka, S.: Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses.-Plant Physiol. 123: 223–233, 2000.PubMedCrossRefGoogle Scholar
  44. Yu, J.Q., Matsui, Y.: Effects of root exudates and allelo-chemical on ion uptake by cucumber seedlings.-J. chem. Ecol. 23: 817–827, 1997.CrossRefGoogle Scholar
  45. Zhou, Y.H., Huang, L.F., Du, Y.S., Yu, J.Q.: Greenhouse and field cucumber genotypes use different mechanisms to protect against dark chilling.-Funct. Plant Biol. 31: 1215–1223, 2004a.CrossRefGoogle Scholar
  46. Zhou, Y.H., Yu, J.Q., Huang, L.F., Nogués, S.: The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery.-Plant Cell Environ. 27: 1503–1514, 2004b.CrossRefGoogle Scholar
  47. Zhou, Y.H., Yu, J.Q., Mao, W.H., Huang, L.F., Song, X.S., Nogués, S.: Genotypic variation on Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants.-Plant Cell Physiol. 47: 192–199, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • W. H. Hu
    • 1
    • 3
  • X. S. Song
    • 1
  • K. Shi
    • 1
  • X. J. Xia
    • 1
  • Y. H. Zhou
    • 1
  • J. Q. Yu
    • 1
    • 2
  1. 1.Department of Horticulture, Huajiachi CampusZhejiang UniversityHangzhouP.R. China
  2. 2.Key Laboratory of Horticultural Plants Growth, Development and BiotechnologyAgricultural Ministry of ChinaHangzhouP.R. China
  3. 3.Department of Life ScienceJinggangshan UniversityJi’anP.R. China

Personalised recommendations